To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Adverse drug reactionAn adverse drug reaction (abbreviated ADR) is an expression that describes the unwanted, negative consequences associated with the use of given medications. An ADR is a particular type of adverse effect. The meaning of this expression differs from the meaning of "side effect", as this last expression might also imply that the effects can be beneficial.[1] The study of ADRs is the concern of the field known as pharmacovigilance. Additional recommended knowledge
ClassificationADRs may be classified by e.g. cause and severity. Cause
Types A and B were proposed in the 1970s,[2] and the other types were proposed subsequently when the first two proved insufficient to classify ADRs.[3] SeverityThe American Food and Drug Administration defines severe effects as:[4]:
Overall Drug RiskWhile no official scale exists yet to communicate overall drug risk, the iGuard Drug Risk Rating System is a five color rating scale similar to the Homeland Security Advisory System[5]:
LocationAdverse effects may be local, i.e. limited to a certain location, or systemic, where a medication has caused adverse effects throughout the systemic circulation. For instance, some ocular antihypertensives cause systemic effects[6], although they are administered locally as eye drops, since a fraction escapes to the systemic circulation. MechanismsAs research better explains the biochemistry of drug use, less ADRs are Type B and more are Type A. Common mechanisms are:
Abnormal pharmacokineticsComorbid disease statesVarious diseases, especially those that cause renal or hepatic insufficiency, may alter drug metabolism. Resources are available that report changes in a drug's metabolism due to disease states.[7] Genetic factorsAbnormal drug metabolism may be due to inherited factors of either Phase I oxidation or Phase II conjugation.[8][9] Pharmacogenomics is the study of the inherited basis for abnormal drug reactions. Phase I reactionsInheriting abnormal alleles of cytochrome P450can alter drug metabolism. Tables are available to check for drug interactions due to P450 interactions.[10].[11] Inheriting abnormal butyrylcholinesterase (pseudocholinesterase) may affect metabolism of drugs such as succinylcholine[12] Phase II reactionsInheriting abnormal N-acetyltransferase which conjugated some drugs to facilitate excretion may affect the metabolism of drugs such as isoniazid, hydralazine, and procainamide.[12][11] Inheriting abnormal thiopurine S-methyltransferase may affect the metabolism of the thiopurine drugs mercaptopurine and azathioprine.[11] Interactions with other drugsThe risk of drug interactions are increased with polypharmacy. Protein bindingThese interactions are usually transient and mild until a new steady state is achieved.[13][14] These are mainly for drugs without much first-pass liver metabolism. The prinicple plasma proteins for drug binding are:[15]
Some drug interactions with warfarin are due to changes in protein binding.[15] Cytochrome P450Patients have abnormal metabolism by cytochrome P450 due to either inheriting abnormal alleles or due to drug interactions. Tables are available to check for drug interactions due to P450 interactions.[16]. Synergistic effectsAn example of synergism is two drugs that both prolong the QT interval. Assessing causalityA simple scale is available at http://annals.org/cgi/content/full/140/10/795.[1]
A more complicated scale is the Naranjo algorithm. Monitoring bodiesMany countries have official bodies that monitor drug safety and reactions. On an international level, the WHO runs the Uppsala Monitoring Centre, and the European Union runs the European Medicines Agency (EMEA). In the United States, the Food and Drug Administration (FDA) is responsible for monitoring post-marketing studies. See also
References
|
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Adverse_drug_reaction". A list of authors is available in Wikipedia. |