To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Adult stem cell
Adult stem cells are undifferentiated cells found throughout the body after embryonic development that divide to replenish dying cells and regenerate damaged tissues. Also known as somatic (from Greek Σωματικóς, of the body) stem cells, they can be found in children, as well as adults. Research into adult stem cells has been fueled by their abilities to divide or self-renew indefinitely and generate all the cell types of the organ from which they originate — potentially regenerating the entire organ from a few cells. Unlike embryonic stem cells, the use of adult stem cells in research and therapy is not controversial because the production of adult stem cells does not require the destruction of an embryo. Adult stem cells can be isolated from a tissue sample obtained from an adult. They have mainly been studied in humans and model organisms such as mice and rats. Additional recommended knowledge
Adult stem cell therapiesDue to the ability of adult stem cells to be harvested from the patient, their therapeutic potential is the focus of much research. [1] [2] [3] Adult stem cells, similar to embryonic stem cells, have the ability to differentiate into more than one cell type, but unlike embryonic stem cells they are often restricted to certain lineages. The ability of a stem cell of one lineage to become another lineage is called transdifferentiation. Different types of adult stem cells are capable of transdifferentiation more than others, and for many there is no evidence of its occurrence. Consequently, adult stem therapies require a stem cell source of the specific lineage needed and harvesting and or culturing them up to the numbers required is a challenge. [4] [5] Pluripotent adult stem cells can be found in a number of tissues including umbilical cord blood.[6] Using genetic reprogramming, pluripotent stem cells equivalent to embryonic stem cells have been derived from human adult skin tissue.[7][8][9] [10][11] Other adult stem cells are lineage-restricted (multipotent) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, etc.).[12][13] A great deal of adult stem cell research has focused on clarifying their capacity to divide or self-renew indefinitely and their differentiation potential.[14] In mice, pluripotent stem cells can be directly generated from adult fibroblast cultures.[15] Adult stem cell treatments have been used for many years to treat successfully leukemia and related bone/blood cancers through bone marrow transplants.[16] The use of adult stem cells in research and therapy is not as controversial as embryonic stem cells, because the production of adult stem cells does not require the destruction of an embryo. Consequently, more US government funding is being provided for adult stem cell research[17]. Adult Stem Cell and CancerIn recent years the concept of adult stem cell has transformed to include the theory that stem cells reside in many adult tissues and that these unique reservoir of adult stem cells are not only responsible for the normal reparative and regenerative processes but are also considered to be a prime target for genetic and epigenetic changes culminating to many abnormal conditions including cancer[3][4]. . PropertiesDefining propertiesThe rigorous definition of a stem cell requires that it possesses two properties:
These properties can be illustrated with relative ease in vitro, using methods such as clonogenic assays, where the progeny of single cell is characterized. However, in vitro cell culture conditions can alter the behavior of cells. Proving that a particular subpopulation of cells possesses stem cell properties in vivo is challenging. Considerable debate exists whether some proposed cell populations in the adult are indeed stem cells. LineageTo ensure self-renewal, stem cells undergo two types of cell division (see Stem cell division and differentiation diagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and a progenitor cell with limited self-renewal potential. Progentiors can go through several rounds of cell division before terminally differentiating into a mature cell. It is believed that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells. Multidrug resistanceAdult stem cells express transporters of the ATP-binding cassette family that actively pump a diversity of organic molecules out of the cell.[18] Many pharmaceuticals are exported by these transporters conferring multidrug resistance onto the cell. This complicates the design of drugs, for instance neural stem cell targeted therapies for the treatment of clinical depression. Signaling pathwaysAdult stem cell research has been focused on uncovering the general molecular mechanisms that control their self-renewal and differentiation.
PlasticityUnder special conditions tissue-specific adult stem cells can generate a whole spectrum of cell types of other tissues, even crossing germ layers.[24] This phenomenon is referred to as stem cell transdifferentiation or plasticity. It can be induced by modifying the growth medium when stem cells are cultured in vitro or transplanting them to an organ of the body different from the one they were originally isolated from. There is yet no consensus among biologists on the prevalence and physiological and therapeutic relevance of stem cell plasticity. TypesAdipose derived adult stem cellsAdipose-derived stem cells (ASCs) have also been isolated from human fat, usually by method of liposuction. This cell population seems to be similar in many ways to mesenchymal stem cells (MSCs) derived from bone marrow. However, it is possible to isolate many more cells from adipose tissue and the harvest procedure itself is less painful than the harvest of bone marrow. Human ASCs have been shown to differentiate in the lab into bone, cartilage, fat, and muscle, while ASCs from rats have been converted to neurons[25], which makes ASCs a possible source for future applications in the clinic.[26][27] In support of this, current studies in animals suggest that ASCs might be able to repair significant bony defects and ASCs have been recently used to successfully repair a large cranial defect in a human patient. [28]
Induced pluripotent stem cells derived from epithelial cellsThese are not adult stem cells, but rather reprogrammed epithelial cells with pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells equivalent to embryonic stem cells have been derived from human adult skin tissue. [9][29] [30]Shinya Yamanaka and his colleagues at Kyoto University used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 [9] in their experiments on cells from human faces. Junying Yu, James Thompson, and their colleagues at the University of Wisconsin-Madison used a different set of factors, Oct4, Sox2, Nanog and Lin28 [9], and carried out their experiments using cells from human foreskin. As a result of the success of these experiments, Ian Wilmut, who helped create the first cloned animal Dolly the Sheep, has announced that he will abandon theraputic cloning as a venue of research.[31] Haematopoietic stem cellsHaematopoietic stem cells give rise to all the blood cell types and are found in the bone marrow. Mammary stem cellsMammary stem cells provide the source of cells for growth of the mammary gland during puberty and gestation and play an important role in carcinogenesis of the breast.[32] Mammary stem cells have been isolated from human and mouse tissue as well as from cell lines derived from the mammary gland. A single such cell can give rise to both luminal and myoepithelial cell types of the gland and has been shown to regenerate the entire organ in mice.[33] Mesenchymal stem cellsMesenchymal stem cells differentiate into connective tissue, and are found in the bone marrow. Endothelial stem cells
Neural stem cellsThe existence of stem cells in the adult brain has been postulated following the discovery that the process of neurogenesis, birth of new neurons, continues into adulthood in rats.[34] It has since been shown that new neurons are generated in adult mice, songbirds and primates, including humans. Normally adult neurogenesis is restricted to the subventricular zone, which lines the lateral ventricles of the brain, and the dentate gyrus of the hippocampal formation.[35] Although the generation of new neurons in the hippocampus is well established, the presence of true self-renewing stem cells there has been debated.[36] Under certain circumstances, such as following tissue damage in ischemia, neurogenesis can be induced in other brain regions, including the neocortex. Neural stem cells are commonly cultured in vitro as so called neurospheres - floating heterogeneous aggregates of cells, containing a large proportion of stem cells.[37] They can be propagated for extended periods of time and differentiated into both neuronal and glia cells, and therefore behave as stem cells. However, some recent studies suggest that this behaviour is induced by the culture conditions in progenitor cells, the progeny of stem cell division that normally undergo a strictly limited number of replication cycles in vivo.[38] Furthermore, neurosphere-derived cells do not behave as stem cells when transplanted back into the brain.[39] Neural stem cells share many properties with haematopoietic stem cells (HSCs). Remarkably, when injected into the blood, neurosphere-derived cells differentiate into various cell types of the immune system.[40] Cells that resemble neural stem cells have been found in the bone marrow, the home of HSCs.[41] It has been suggested that new neurons in the dentate gyrus arise from circulating HCSs. Indeed, newborn cells first appear in the dentate in the heavily vascularised subgranular zone immediately adjacent to blood vessels. Olfactory adult stem cellsOlfactory adult stem cells have been successfully harvested from the human olfactory mucosa cells, the lining of the nose involved in the sense of smell.[42]
Olfactory stem cells hold potential for therapeutic applications. Thanks to their location they can be harvested with ease without harm to the patient in contrast to neural stem cells. Testicular cellsMultipotent stem cells with a claimed equivalency to embryonic stem cells have been derived from spermatogonial progenitor cells found in the testicles of laboratory mice by scientists in Germany[43][44][45] and the United States. [46][47][48][49]. Multipotent stem cells have also been derived from germ cells found in human testicles.[50] Open questions in adult stem cell research
News and External links
Academic
References
Categories: Stem cells | Biotechnology |
|||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Adult_stem_cell". A list of authors is available in Wikipedia. |