To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Digestion
Additional recommended knowledge
OverviewDigestion occurs at the multicellular, cellular, and sub-cellular levels, usually in animals. This process takes place in the digestive system, gastrointestinal tract, or alimentary canal. The digestive system as a whole is a one-way tube with accessory organs like the liver, gallbladder, and pancreas adding substances to the process of digestion. Digestion is usually divided into mechanical manipulation and chemical action. In most vertebrates, digestion is a multi-stage process in the digestive system, following ingestion of the raw materials, most often other organisms. The process of ingestion usually involves some type of mechanical manipulation. Digestion is separated into four separate processes:
Underlying the process is muscle movement throughout the system, deglutition and peristalsis. Human digestion processPhases of human digestion
Oral cavityIn humans, digestion begins in the oral cavity where food is chewed. Saliva is secreted in large amounts (1-1.5 litre/day) by three pairs of exocrine salivary glands (parotid, submandibular, and sublingual) in the oral cavity, and is mixed with the chewed food by the tongue. There are two types of saliva. One is a thin, watery secretion, and its purpose is to wet the food. The other is a thick, mucous secretion, and it acts as a lubricant and causes food particles to stick together and form a bolus. The saliva serves to clean the oral cavity and moisten the food, and contains digestive enzymes such as salivary amylase, which aids in the chemical breakdown of polysaccharides such as starch into disaccharides such as maltose. It also contains mucin, a glycoprotein which helps soften the food into a bolus. Swallowing transports the chewed food into the esophagus, passing through the oropharynx and hypopharynx. The mechanism for swallowing is coordinated by the swallowing center in the medulla oblongata and pons. The reflex is initiated by touch receptors in the pharynx as the bolus of food is pushed to the back of the mouth. EsophagusThe esophagus, a narrow, muscular tube about 20 centimeters (8 inches) long, starts at the pharynx, passes through the thorax and diaphragm, and ends at the cardiac orifice of the stomach. The wall of the esophagus is made up of two layers of smooth muscles, which form a continuous layer from the esophagus to the rectum and contract slowly, over long periods of time. The inner layer of muscles is arranged circularly in a series of descending rings, while the outer layer is arranged longitudinally. At the top of the esophagus, is a flap of tissue called the epiglottis that closes during swallowing to prevent food from entering the trachea (windpipe). The chewed food is pushed down the esophagus to the stomach through peristaltic contraction of these muscles. It takes only seconds for food to pass through the esophagus, and little digestion actually takes place. StomachThe food enters the stomach after passing through the cardiac orifice. In the stomach, food is further broken apart, and thoroughly mixed with a gastric acid and digestive enzymes that break down proteins. The acid itself does not break down food molecules, rather, the acid provides an optimum pH for the reaction of the enzyme pepsin. The parietal cells of the stomach also secrete a glycoprotein called intrinsic factor which enables the absorption of vitamin B-12. Other small molecules such as alcohol are absorbed in the stomach as well by passing through the membrane of the stomach and entering the circulatory system directly. Small intestineAfter being processed in the stomach, food is passed to the small intestine via the pyloric sphincter. The majority of digestion and absorption occur here as chyme enters the duodenum. Here it is further mixed with three different liquids:
Most nutrient absorption takes place in the small intestine. As the acid level changes in the small intestines, more enzymes are activated to split apart the molecular structure of the various nutrients so they may be absorbed into the circulatory or lymphatic systems. Nutrients pass through the small intestine's wall, which contains small, finger-like structures called villi(singular villus), and each villus contains even smaller hair-like structures called microvilli. The blood, which has absorbed nutrients, is carried away from the small intestine via the hepatic portal vein and goes to the liver for filtering, removal of toxins, and nutrient processing. The small intestine and remainder of the digestive tract undergoes peristalsis to transport food from the stomach to the rectum and allow food to be mixed with the digestive juices and absorbed. The circular muscles and longitudinal muscles are antagonistic muscles, with one contracting as the other relaxes. When the circular muscles contract, the lumen becomes narrower and longer and the food is squeezed and pushed forward. When the longitudinal muscles contract, the circular muscles relax and the gut dilates to become wider and shorter to allow food to enter. Large intestineAfter the food has been passed through the small intestine, the food enters the large intestine. The large intestine is roughly 1.5 meters long, with three parts: the cecum at the junction with the small intestine, the colon, and the rectum. The colon itself has four parts: the ascending colon, the transverse colon, the descending colon, and the sigmoid colon. The large intestine absorbs water from the bolus and stores feces until it can be excreted. Food products that cannot go through the villi, such as cellulose (dietary fiber), are mixed with other waste products from the body and become feces. Carbohydrate digestionCarbohydrates are formed in growing plants and are found in grains, leafy vegetables, and other edible plant foods. The molecular structure of these plants is complex, or a polysaccharide; poly is a prefix meaning many. Plants form carbohydrate chains during growth by trapping carbon from the atmosphere, initially carbon dioxide (CO2). Carbon is stored within the plant along with water (H2O) to form a complex starch containing a combination of carbon-hydrogen-oxygen in a fixed ratio of 1:2:1 respectively. Plants with a high sugar content and table sugar represent a less complex structure and are called disaccharides, or two sugar molecules bonded. Once digestion of either of these forms of carbohydrates are complete, the result is a single sugar structure, a monosaccharide. These monosaccharides can be absorbed into the blood and used by individual cells to produce the energy compound adenosine triphosphate (ATP). The digestive system starts the process of breaking down polysaccharides in the mouth through the introduction of amylase, a digestive enzyme in saliva. The high acid content of the stomach inhibits the enzyme activity, so carbohydrate digestion is suspended in the stomach. Upon emptying into the small intestines, potential hydrogen (pH) changes dramatically from a strong acid to an alkaline content. The pancreas secretes bicarbonate to neutralize the acid from the stomach, and the mucus secreted in the tissue lining the intestines is alkaline which promotes digestive enzyme activity. Amylase is present in the small intestines and works with other enzymes to complete the breakdown of carbohydrate into a monosaccharide which is absorbed into the surrounding capillaries of the villi. Nutrients in the blood are transported to the liver via the hepatic portal circuit, or loop, where final carbohydrate digestion is accomplished in the liver. The liver accomplishes carbohydrate digestion in response to the hormones insulin and glucagon. As blood glucose levels increase following digestion of a meal, the pancreas secretes insulin causing the liver to transform glucose to glycogen, which is stored in the liver, adipose tissue, and in muscle cells, preventing hyperglycemia. A few hours following a meal, blood glucose will drop due to muscle activity, and the pancreas will now secrete glucagon which causes glycogen to be converted into glucose to prevent hypoglycemia. Note: In the discussion of digestion of carbohydrates; nouns ending in the suffix -ose usually indicate a sugar, such as lactose. Nouns ending in the suffix -ase indicates the enzyme that will break down the sugar, such as lactase. Enzymes usually begin with the substrate (substance) they are breaking down. For example: maltose, a disaccharide, is broken down by the enzyme maltase (by the process of hydrolysis), resulting in a two glucose molecules, a monosaccharide. Fat digestionThe presence of fat in the small intestine produces hormones which stimulate the release of lipase from the pancreas and bile from the gallbladder. The lipase (activated by acid) breaks down the fat into monoglycerides and fatty acids. The bile emulsifies the fatty acids so they may be easily absorbed. Short- and medium chain fatty acids are absorbed directly into the blood via intestine capillaries and travel through the portal vein just as other absorbed nutrients do. However, long chain fatty acids are too large to be directly released into the tiny intestine capillaries. Instead they are absorbed into the fatty walls of the intestine villi and reassembled again into triglycerides. The triglycerides are coated with cholesterol and protein (protein coat) into a compound called a chylomicron. Within the villi, the chylomicron enters a lymphatic capillary called a lacteal, which merges into larger lymphatic vessels. It is transported via the lymphatic system and the thoracic duct up to a location near the heart (where the arteries and veins are larger). The thoracic duct empties the chylomicrons into the bloodstream via the left subclavian vein. At this point the chylomicrons can transport the triglycerides to where they are needed. Digestive hormonesThere are at least four hormones that aid and regulate the digestive system:
Significance of pH in digestionDigestion is a complex process which is controlled by several factors. pH plays a crucial role in a normally functioning digestive tract. In the mouth, pharynx, and esophagus, pH is typically about 6.8, very weakly acidic. Saliva controls pH in this region of the digestive tract. Salivary amylase is contained in saliva and starts the breakdown of carbohydrates into monosaccharides. Most digestive enzymes are sensitive to pH and will not function in a low-pH environment like the stomach. Low pH (below 5) indicates a strong acid, while a high pH (above 8) indicates a strong base; the concentration of the acid or base, however, does also play a role. pH in the stomach is very acidic and inhibits the breakdown of carbohydrates while there. The strong acid content of the stomach provides two benefits, both serving to denature proteins for further digestion in the small intestines, as well as providing non-specific immunity, retarding or eliminating various pathogens. In the small intestines, the duodenum provides critical pH balancing to activate digestive enzymes. The liver secretes bile into the duodenum to neutralise the acidic conditions from the stomach. Also the pancreatic duct empties into the duodenum, adding bicarbonate to neutralize the acidic chyme, thus creating a neutral environment. The mucosal tissue of the small intestines is alkaline, creating a pH of about 8.5, thus enabling absorption in a mild alkaline in the environment. Specialized organs in non-human animalsOrganisms have evolved specialized organs to aid in the digestion of their food, modifying tongues, teeth, and other organs to assist in digestion. Certain insects may have a crop or enlarged esophagus, while birds and cockroaches have developed gizzards to assist in the digestion of tough materials. Herbivores have evolved cecums (or an abomasum in the case of ruminants) to break down cellulose in plants. See also
References
|
|||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Digestion". A list of authors is available in Wikipedia. |