Eine Art, viele Genome

Anpassung an die Umwelt hat einen stärkeren Einfluss auf das pflanzliche Erbgut als angenommen

20.07.2007

Um den Variationen im Erbgut verschiedener Arabidopsis-Sorten auf die Spur zu kommen, verglichen Forschergruppen aus Tübingen und Kalifornien unter Leitung von Detlef Weigel das Erbgut von 19 wildlebenden Populationen mit dem im Jahr 2000 sequenzierten Genom eines Laborstamms. Dabei nahmen sie in einem äußerst aufwändigen Verfahren jeden einzelnen der rund 120 Millionen Bausteine unter die Lupe, aus denen das Arabidopsis-Genom aufgebaut ist. Als molekulare Spürhunde verwendeten sie rund eine Milliarde speziell hergestellter, kurzer Erbgutsonden. "Zusammengesetzt wären diese Sonden siebenmal so lang wie das gesamte menschliche Erbgut", veranschaulicht Detlef Weigel, Direktor am Max-Planck-Institut für Entwicklungsbiologie in Tübingen, die Dimension dieses Projekts. Die Daten wurden mithilfe verschiedener speziell für das Projekt entwickelter statistischer Verfahren ausgewertet, darunter auch einer Variante des maschinellen Lernens.

Das Ergebnis der Fleißarbeit: Ungefähr einer von 180 DNA-Buchstaben erwies sich als variabel. Rund vier Prozent des Referenzgenoms fanden sich bei den Wildstämmen nur in stark veränderter Form oder gar nicht wieder. Und fast jedes zehnte Gen wies in mindestens einer der 19 untersuchten Wildpflanzen so starke Defekte auf, dass es seiner normalen Funktion nicht mehr ausüben kann! Ergebnisse wie diese werfen grundlegende Fragen auf. Insbesondere relativieren sie den Wert der bisher sequenzierten Modellgenome. "Das Genom gibt es nicht", sagt Weigel. Die DNA-Sequenz eines Individuums reiche bei Weitem nicht aus, um eine ganze Art umfassend zu verstehen. Auch in der Humanmedizin hat sich diese Erkenntnis bereits durchgesetzt, und es werden derzeit große Anstrengungen unternommen, um das Erbgut möglichst vieler verschiedener Menschen zu sequenzieren und zu analysieren.

Dass gerade die Ackerschmalwand zu den Arten mit äußerst variablem Erbgut zählt, erstaunt dennoch. Denn im Gegensatz zum Erbgut des Menschen oder vieler Ackerpflanzen wie dem Mais, die viele Wiederholungen und scheinbar bedeutungslose Füllsequenzen enthalten, ist das Arabidopsis-Genom äußerst kompakt aufgebaut: Bei ungefähr gleicher Anzahl von Genen ist es rund 24-mal kleiner als das Humangenom. "Dass selbst bei einem derart windschnittigen Genom fast jedes zehnte Gen entbehrlich ist, hat uns überrascht", gesteht Weigel. Detailliertere Analysen ergaben, dass Gene, die grundlegende Zellfunktionen wie die Proteinherstellung oder die Genregulation betreffen, nur selten starke Unterschiede aufweisen. Dagegen erfahren Gene, die für die Interaktion der Pflanze mit ihrer biologischen Umwelt verantwortlich sind - etwa bei der Abwehr von Schädlingen und Infektionen - überproportional häufig eine schwerwiegende Veränderung. "Die genetische Variabilität scheint tatsächlich die Anpassung an regionale Wachstumsbedingungen und lokale Besonderheiten widerzuspiegeln", erläutert Weigel. Vermutlich seien einige der betreffenden Gene auch dafür verantwortlich, der Pflanze ein Leben an besonders trockenen oder feuchten, heißen oder kühlen Standorten oder in Gegenden mit kürzerer oder längerer Vegetationsperiode zu ermöglichen.

Die aufwändigen Untersuchungen des Tübinger Molekularbiologen könnten hier zu einem besseren Verständnis beitragen. Für Weigel war dies einer der wichtigsten Beweggründe für die Studie. "Durch Ausweitung unserer Arbeiten auf andere Arten erhoffen wir uns Erkenntnisse, wie man Nutzpflanzen züchten kann, die besonders gut an wechselnde Wachstumsbedingungen angepasst sind", erklärt er. Gerade angesichts eines sich rasch verändernden Weltklimas sei die Beantwortung dieser Frage von größter Bedeutung. So kooperieren die Max-Planck-Forscher bereits mit dem Internationalen Reisforschungsinstitut auf den Philippinen, um die Methoden und Erfahrungen, die bei der Arbeit mit Arabidopsis gesammelt wurden, auf zwanzig verschiedene Reissorten anzuwenden.

Wie Umwelt und Genom interagieren, wollen die Tübinger Forscher in Zukunft mit noch leistungsfähigeren Methoden untersuchen. Während das bisher angewandte Verfahren nur diejenigen Gene aufzeigt, die sich im Vergleich zum Referenzgenom verändert haben oder verloren gegangen sind, ließe sich durch die direkte Sequenzierung von Wildpflanzen-DNA auch neu hinzugekommenes Erbmaterial identifizieren. Zu diesem Zweck möchten Weigel und seine Kollegen das Erbgut von 1001 Arabidopsis-Sorten "durchbuchstabieren". Ein neues Gerät, mit dem sich das Genom einer Pflanze innerhalb weniger Tage sequenzieren lässt, steht bereits parat. Nun müssen nur noch entsprechende Computerprogramme für die Interpretation dieser Datenflut entwickelt werden.

Originalveröffentlichung: Richard M. Clark, Gabriele Schweikert, Christopher Toomajian, Stephan Ossowski, Georg Zeller, Paul Shinn, Norman Whartmann, Tina T. Hu, Glenn Fu, David A. Hinds, Huaming Chen, Kelly A. Frazer, Daniel H. Huson, Bernhard Schölkopf, Magnus Nordborg, Gunnar Rätsch, Joseph R. Ecker, Detlef Weigel; "Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana"; Science, 20. Juli 2007.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!