Wie Bakterien Nano-Cluster aus Edelmetall herstellen

16.08.2006

Wissenschaftler des Forschungszentrums Rossendorf nutzen den Überlebensmechanismus eines aus einer Uranabfallhalde isolierten Bakteriums, um hochstabile Nanopartikel aus dem Edelmetall Palladium herzustellen. Die winzigen Kügelchen in der Größe von einigen Millionstel Millimetern weisen völlig neue Eigenschaften auf, beispielsweise eine verbesserte katalytische Aktivität. Damit erscheinen sie ideal geeignet für den Einsatz in der Katalysatortechnik.

Um Nanopartikel aus dem Edelmetall Palladium herzustellen, nutzen Biologen vom Forschungszentrum Rossendorf (FZR) die Eiweißhülle eines Bakteriums als Trägerschicht. Das Bakterium schützt sich mit dieser Hülle vor dem Schwermetall Uran und kann damit in der exotischen Umgebung einer Uranerz-Abfallhalde überleben. Das Bakterium heißt "Bacillus sphaericus JG-A12" und wurde 1997 von einem Biologenteam des FZR in der Halde Johanngeorgenstadt in Sachsen entdeckt. Seine Eiweißhülle, im Fachjargon S-Layer genannt, weist eine regelmäßige Gitterstruktur mit Poren in der Größe von einigen Nanometern auf. Auf diese Gitterstruktur brachten FZR-Wissenschaftler zunächst ein Metallsalz mit gelösten Palladium-Ionen auf. Anschließend beobachteten sie die Anbindung der Metallsalze an die Eiweißhülle mit Hilfe eines patentierten Verfahrens der Infrarot-Spektroskopie. Das Hauptinteresse der Forscher galt genau dieser Interaktion zwischen dem biologischen Molekül und dem Metall.

In den Poren des S-Layers verwandelt sich die unedle Metallsalzlösung unter Einsatz von Wasserstoff in das Edelmetall, das in Form von winzigen Palladiumkügelchen in regelmäßigen Abständen auf der Trägerschicht angeordnet ist. Ein solches Kügelchen besteht aus nur 50 bis 80 einzelnen Palladium-Atomen. Im Ergebnis entsteht eine Schicht aus Palladiumclustern mit neuartigen Eigenschaften. Das Bemerkenswerte hierbei ist, dass sich die Eiweißhülle und die Nanopartikel gegenseitig stabilisieren. Damit bleibt das Gesamtsystem sowohl bei hohen Temperaturen als auch in einer säurehaltigen Umgebung hochstabil. Aufgrund ihres kleinen Durchmessers bieten die Palladiumpartikel im Verhältnis zu ihrer Größe sehr viele Oberflächenatome, an denen andere Substanzen binden können. Palladium wird heute vielfach als Katalysator eingesetzt, etwa in der chemischen Industrie oder zur Entgiftung von Autoabgasen. Nano-Katalysatoren aus Palladium sind interessant, da sie bereits bei niedrigeren Temperaturen als Palladium in herkömmlichen Katalysatoren chemische Reaktionen beschleunigen. Die Technologie hierfür wird in vereinzelten Labors auch bereits erprobt.

Die FZR-Wissenschaftler gehen jedoch einen Schritt weiter, denn ihr Ziel ist es, neuartige Nano-Katalysatoren mit anderen Edelmetallen wie etwa Gold herzustellen oder aber die Größe für Palladium-Nanocluster gezielt zu verändern. So könnten Einsatzmöglichkeiten und Effizienz von Nanokatalysatoren noch erheblich gesteigert werden. Als erster Gruppe ist es ihnen vor kurzem gelungen, die Art und den Ort der Bindung zwischen dem Edelmetall und der Eiweißhülle des "Bacillus sphaericus JG-A12" genauestens zu bestimmen. Dies ist eine wesentliche Voraussetzung dafür, das S-Layer-Protein gentechnisch zu manipulieren. Selbst Materialien mit neuen optischen oder magnetischen Eigenschaften könnten dann in Zukunft mit der Hilfe von Bakterien erzeugt werden.

Originalveröffentlichung: K. Fahmy, M. Merroun, K. Pollmann, J. Raff, O. Savchuk, C. Hennig, S. Selenska-Pobell; "Secondary structure and Pd(II) coordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy"; Biophysical Journal 2006.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren