Molekularen Maschinen bei der Arbeit zugesehen

Forscher klären katalytischen Mechanismus von antiviralem Protein

03.03.2006

Die Aktivität eines menschlichen Proteins, das an der Abwehr von Viren und anderen Krankheitserregern beteiligt ist, konnte der RUB-Chemiker Prof. Dr. Christian Herrmann in Zusammenarbeit mit Forschern des Max-Planck-Instituts in Dortmund und einem französischen Labor auf molekularer Ebene aufklären: Ein funktionelles Merkmal der Proteinklasse hGBP1 (humanes Guanylat-bindendes Protein 1) besteht in der katalytischen Spaltung von Cofaktor-Molekülen. Damit gehen die geordnete Zusammenlagerung (Assemblierung) und strukturelle Umwandlungen der Proteine einher, die für ihre biologische Wirkung von Bedeutung sind. Das von den Forschern erarbeitete Modell kann zum Verständnis der Funktionsweise einer Vielzahl ähnlicher Proteine dienen und Hinweise für die gezielte Behandlung verschiedener Krankheiten geben.

Das Enzym hGBP1 gehört zu einer Klasse von Proteinen, von denen einige eine wichtige Funktion bei der Abwehr von Viren haben, während andere für das Abschnüren von Membranbläschen im Innern der Zelle verantwortlich sind. Von hGBP1 ist eine antivirale Wirkung und ein Einfluss auf die Bildung von Blutgefäßen (Angiogenese) bekannt. Charakteristisch für das Protein ist die Bindung und katalytische Spaltung eines Cofaktors, der einerseits die Struktur und damit die biologische Aktivität des jeweiligen Proteins reguliert. Zum anderen wird durch diesen Spaltungsvorgang bei einigen Proteinen aber auch die Energie für größere, strukturelle Änderungen und damit für die mechanische Arbeit dieser kleinen, molekularen Maschinen geliefert. "Wir haben herausgefunden, dass die hGBP1-Moleküle nach Bindung eines bestimmten Cofaktors miteinander kommunizieren und eine katalytische Spaltung des Cofaktors stimulieren", erklärt Prof. Herrmann. Zum ersten Mal konnten die Forscher zeigen, wie Proteine durch Selbst-Assemblierung eine katalytische Wirkung hervorrufen, die auf ihr eigenes Verhalten und ihre Funktion zurückstrahlt.

Die untersuchte Klasse von Proteinen hat außerordentlich vielseitige, biologische Funktionen. Mutierte Varianten dieser Proteine sind für zahlreiche Krankheiten verantwortlich, darunter auch Krebs. Untersuchungen der molekularen Mechanismen zeigen nicht nur, wie ein Protein funktioniert, sondern auch, wie und warum es bei einer bestimmten Störung nicht mehr funktioniert. Dies gibt der Forschung Ansatzpunkte für die Entwicklung von Wirkstoffen und zeigt Möglichkeiten auf, wie eine Krankheit gezielt zu bekämpfen ist. Das hGBP1 kann als Modell für viele andere Enzyme dieser Klasse dienen.

Originalveröffentlichung: A. Ghosh, G. J. K. Praefcke, L. Renault, .A. Wittinghofer, C. Herrmann; "How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP."; Nature 2006 , 439 (7080).

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!