Neuer Rezeptor erklärt Vielzweck-Organellen

21.11.2016 - Deutschland

Die Bäckerhefe hat Forschern erneut zu grundlegenden Erkenntnissen über die Vorgänge im Inneren von Zellen verholfen.

© RUB, Marquard

Ihnen gelang die Entdeckung: Luis Daniel Cruz-Zaragoza, Prof. Dr. Ralf Erdmann, Prof. Dr. Wolfgang Schliebs (von links).

Dem Team um Prof. Dr. Ralf Erdmann aus der Abteilung Systembiochemie der Ruhr-Universität Bochum ist ein weiterer Schritt zum Verständnis wahrer Vielzweck-Organellen geglückt: In Peroxisomen, die unter anderem am Abbau von Fettsäuren beteiligt sind, entdeckten sie einen neuen Rezeptor namens Pex9p. Er kann gefaltete Proteine aus der Zellflüssigkeit in Peroxisomen importieren, wird aber nur unter ganz bestimmten Bedingungen produziert. Diese Beobachtung erklärt, wie sich Zellen an verschiedene Bedingungen anpassen können.

Überlebenswichtiger Zellbestandteil

Peroxisomen kommen überall im Körper vor und können viele Funktionen übernehmen. Sie sind am Abbau von Fettsäuren beteiligt, bauen Wasserstoffperoxid ab und sind beim Menschen an der Bildung von Gallensäuren beteiligt. Insgesamt sind bisher über 50 in Peroxisomen enthaltene Enzyme bekannt, bestimmte Proteine, die an verschiedensten Stoffwechselwegen beteiligt sind. Fehlen Peroxisomen, hat das für Menschen schwerwiegende Folgen und führt häufig zu einem frühen Tod.

In der Bäckerhefe sind Peroxisomen am Fettsäureabbau beteiligt. Die Enzyme für diesen Stoffwechselweg tragen Signalsequenzen, die den Transport in die Peroxisomen einleiten. Zwei dieser Signalsequenzen werden von zwei verschiedenen Importrezeptoren in der Zellflüssigkeit der Zelle erkannt, woraufhin der Import erfolgt. Die Signalsequenz PTS1 wird vom Rezeptor Pex5p erkannt, Signalsequenz PTS2 von Pex7p. „Eine Besonderheit des peroxisomalen Proteinimports ist, dass die Proteine im gefalteten, das heißt aktiven Zustand importiert werden“, erklärt Ralf Erdmann, der die aktuelle Studie leitete.

Das Nahrungsangebot bestimmt, wo Enzyme sich befinden

Die Forscher nahmen den Glyoxylatzyklus unter die Lupe, der es vielen Organismen ermöglicht, nicht fermentierbare Nährstoffe wie Alkohol oder Fettsäuren zu Zucker umzuwandeln. Bei der Verwertung von Alkohol entsteht dabei aktivierte Essigsäure in der Zellflüssigkeit, die dann von den ebenfalls dort befindlichen Enzymen des Glyoxylatzyklus verstoffwechselt wird. Eine besondere Bedeutung haben dabei die Enzyme Malat-Synthase 1 und Malat-Synthase 2, die die aktivierte Essigsäure direkt umsetzen. Beim Abbau von Fettsäuren wird die aktivierte Essigsäure nun nicht mehr in der Zellflüssigkeit, sondern in den Peroxisomen gebildet.

Es war bereits bekannt, dass dieser Wechsel mit dem Transport der Malat-Synthasen in die Peroxisomen einhergeht. In der aktuellen Arbeit haben die Forscher die molekulare Ursache für den Transport der Enzyme in die Peroxisomen aufgeklärt. „Beim Wachstum der Hefe auf Fettsäuren wird der Rezeptor Pex9p produziert, der die Signalsequenz der Malat-Synthasen erkennt, und die Enzyme dann aus der Zellflüssigkeit in die Peroxisomen transportiert“, erklärt Ralf Erdmann. Pex9p ist somit ein neuer Importrezeptor der Peroxisomen, der unter bestimmten Bedingungen produziert wird und dann Enzyme selektiv aus in die Peroxisomen dirigiert.

Vorteil: Aktive Enzyme können importiert werden

Peroxisomen tragen maßgeblich zur Anpassung von Organismen an unterschiedliche Nahrungsangebote oder Umweltbedingungen bei. „Der neu entdeckte Transportweg trägt somit zu unserem Verständnis von Peroxisomen als Vielzweck-Organellen bei, deren Anzahl, Größe und Stoffwechselaktivität an die jeweiligen Erfordernisse angepasst werden können“, so Erdmann. Mit ihrer Arbeit zeigen die Autoren außerdem einen Vorteil der Fähigkeit von Peroxisomen, gefaltete Proteine importieren zu können. Ohne diese Fähigkeit könnten aktive Enzyme nicht in die Peroxisomen transportiert werden.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...