Mikroben fertigen Bioplastik aus Rauchgas und Strom

Neuer Biokatalysator nutzt Kohlendioxid als Rohstoff sowie regenerative Energien zur mikrobiellen Elektrosynthese

07.11.2016 - Deutschland

Ein ressourcenschonendes und kostengünstiges Verfahren zur Herstellung von Bioplastik entwickeln Forscher am Karlsruher Institut für Technologie (KIT): In dem vom Bundesforschungsministerium geförderten Projekt „BioElectroPlast“ setzen sie Mikroorganismen ein, die aus Rauchgas, Luft sowie Strom aus erneuerbaren Quellen das Polymer Polyhydroxybuttersäure produzieren. Der so optimierte Prozess der mikrobiellen Elektrosynthese eröffnet für die Zukunft weitere Perspektiven, etwa zur Herstellung von Biokraftstoffen oder zur Speicherung von Strom aus regenerativen Quellen in Form chemischer Produkte.

Constanze Zacharias

Der Biologe Johannes Eberhard Reiner vom KIT mit den Reaktoren zur mikrobiellen Elektrosynthese.

Mit dem Wunsch der Verbraucher nach nachhaltigen Erzeugnissen wächst auch die Nachfrage nach Bioplastik, beispielsweise für Einwegbecher, Verpackungen oder Abfallbeutel. Das am Institut für Angewandte Biowissenschaften (IAB) des KIT, Abteilung Angewandte Biologie unter Leitung von Professor Johannes Gescher, koordinierte Projekt „BioElectroPlast“ zielt auf ein Verfahren zur Herstellung von Bioplastik, das Ressourcen schont und Kosten spart. Darüber hinaus ist „BioElectroPlast“ darauf ausgerichtet, das Treibhausgas Kohlendioxid (CO2) als günstigen, überall verfügbaren Rohstoff in die Wertschöpfungskette einzubauen sowie erneuerbare Energien einzukoppeln.

Die Wissenschaftler bauen dabei auf eine relativ neue Technologie – die mikrobielle Elektrosynthese: Vor rund sechs Jahren beschrieben Forscher in den USA erstmals, wie bestimmte Mikroorganismen auf einer Kathode wachsen, dabei CO2 fixieren und die Kathode als alleinige Energie- und Elektronenquelle nutzen. Ein chemischer Prozess dagegen verlangt hohe Drücke und Temperaturen, das heißt einen hohen Energieeinsatz, sowie teure Katalysatoren. Bisher wurden mit der mikrobiellen Elektrosynthese meist Acetate – Salze der Essigsäure – produziert. „Wir haben den Prozess dahingehend optimiert, dass wir den Mikroorganismen mehr Energie zur Verfügung stellen, sodass sie komplexere Moleküle – zum Beispiel Polymere – produzieren können“, erklärt Johannes Eberhard Reiner vom IAB des KIT. „Dazu mischen wir das CO2 mit Luft. Die Mikroorganismen können dann den Sauerstoff als Elektronenakzeptor nutzen. Das ist dem menschlichen Atmungsprozess recht ähnlich, bei dem der Sauerstoff ebenfalls als Empfänger von Elektronen dient. Bei uns Menschen kommen die Elektronen natürlich nicht von einer Kathode, sondern werden durch die Verstoffwechselung der aufgenommenen Nahrung in den Zellen freigesetzt und dort dann zur Energiegewinnung auf Sauerstoff übertragen.“

Die Forscher setzen einen neu isolierten Mikroorganismus, der sich ständig selbst regeneriert, als Biokatalysator ein und greifen auf Rauchgas als CO2-Quelle zurück. Damit erreichen sie nicht nur eine Reduktion des Treibhausgases CO2, sondern schonen auch andere Quellen für organischen Kohlenstoff, die üblicherweise als biotechnologische Substrate dienen, wie landwirtschaftliche Produkte. Dies vermeidet eine Konkurrenz zur Nahrungs- und Futtermittelherstellung. Die für den „BioElectroPlast“-Prozess erforderliche elektrische Energie beziehen die Wissenschaftler aus regenerativen Quellen.

Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt „BioElectroPlast“ im Rahmen seiner Initiative „CO2Plus – Stoffliche Nutzung von CO2 zur Verbreiterung der Rohstoffbasis“. „BioElectroPlast“ startete im September dieses Jahres und ist auf drei Jahre angelegt. Partner sind neben dem IAB der Lehrstuhl für Wasserchemie und Wassertechnologie von Professor Harald Horn am Engler-Bunte-Institut (EBI) und die Gruppe Bioprozesstechnik und Biosysteme unter Leitung von Professor Andreas Dötsch am Institut für Funktionelle Grenzflächen (IFG) des KIT sowie die Universität Freiburg und die EnBW AG. Die EnBW engagiert sich in diesem Projekt, um so den CO2-Ausstoß bei der Brückentechnologie Kohleverbrennung weiter zu reduzieren. Die Forscher werden ihre Reaktoren direkt im Kohlekraftwerk der EnBW am Rheinhafen Karlsruhe testen und dabei die Abgase des Kraftwerks nutzen.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...