Viraler Anker im Zellkern

HZI- Forscher entschlüsseln Struktur des Bindeglieds zwischen dem KSHV-Virus und chromosomaler DNA

06.05.2015 - Deutschland

Das Kaposi Sarkom-assoziierte Herpesvirus (KSHV) ist ein Tumor-Virus, das an der Ausbildung verschiedener Krebsarten beteiligt ist. In infizierten Körperzellen liegt die virale DNA größtenteils in latenter Form vor. Das bedeutet, dass sich das Virus nicht aktiv vermehrt, sondern sich vielmehr passiv nur einmal pro Zellteilung kopieren lässt. Die latente virale DNA ist dabei nicht direkt ins zelluläre Genom eingebaut, sondern liegt als separates, ringförmiges Molekül im Zellkern vor. Damit das Molekül bei einer Teilung seiner Wirtszelle nicht aus dem Zellkern verloren geht, heftet es sich mit einem "Anker" an die Wirtschromosomen. Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig ist es nun gelungen, den genauen Aufbau des Ankers zu entschlüsseln, was entscheidend zum Verständnis seiner Funktion beiträgt. Ihre Ergebnisse veröffentlichten die Forscher im Journal PNAS.

Das KSHV verursacht verschiedene Krebserkrankungen, wie beispielsweise das namensgebende Kaposi Sarkom, das durch die unkontrollierte Vermehrung von Blutgefäßzellen in der Haut gekennzeichnet ist. Im Normalfall liegt das Virus im Körper latent vor, es schläft also sozusagen. Erst wenn das Immunsystem des Patienten geschwächt ist, wie es zum Beispiel bei AIDS oder nach Organtransplantationen der Fall ist, wird es aktiv und für den Menschen gefährlich.

Um in den sich ständig teilenden Körperzellen zu überleben, muss es sich an das Erbgut der menschlichen Zellen hängen. Diese Verankerung der viralen DNA ist für das KSHV überlebenswichtig.

Zu diesem Zweck hat das Virus deshalb ein Protein gebildet, das ihm als Anker dient: das sogenannte "Latency-Associated Nuclear Antigen" (LANA). „Ohne dieses Protein würde das Virus die Zellteilung nicht überstehen“, sagt Dr. Christiane Ritter, Leiterin der Einheit NMR-Spektroskopie am HZI. „Daher ist die genaue Kenntnis über den Verankerungsmechanismus für die Entwicklung von möglichen Medikamenten von großem Interesse.“

„Das LANA-Molekül bietet gleich mehrere Angriffspunkte für die Therapieentwicklung gegen durch das Virus verursachte Krankheiten. Die Bindung von LANA an die virale DNA durch einen Wirkstoff selektiv zu blockieren ist dafür ein sehr erfolgversprechender Ansatz“ sagt Dr. Thorsten Lührs, ehemaliger Leiter der Emmy Nöther Gruppe Transmission Barriers. Ihm und seinen Kollegen ist es nun erstmals gelungen, den dreidimensionalen Aufbau des DNA-bindenden Moduls von LANA in direktem Kontakt mit einem kurzen Abschnitt viraler DNA zu entschlüsseln.

Um die Kontaktfläche zwischen LANA und der viralen DNA mit annähernd atomarer Auflösung sichtbar machen zu können, kristallisierten die Forscher das DNA-bindende Modul von LANA zusammen mit viraler DNA. Anschließend klärten sie die entsprechende Kristallstruktur am Teilchenbeschleuniger "PETRA III" des Deutschen Elektronensynchrotrons in Hamburg auf. Diese Methode legt die molekularen Details der Kristallbausteine - hier also des LANA-DNA-Komplexes – offen.

„Dank dieser Methoden haben wir neben der Aufklärung der Struktur auch noch eine bisher unentdeckte, dritte Bindestelle für den Anker auf der viralen DNA entdeckt, deren Existenz unsere Partner an der Medizinischen Hochschule Hannover auch in Experimenten nachweisen konnten“, sagt Jan Hellert, Erstautor der Studie und Doktorand am HZI.  

Die Kombination der beiden Ergebnisse erlaubt es den Forschern, ein Modell zu zeichnen, das erklärt, wie ein Komplex aus drei LANA-Einheiten die virale DNA erfasst. So konnten sie die Funktion des Komplexes entschlüsseln. „Damit haben wir nicht nur einen wesentlichen Schritt zur Entwicklung neuer Medikamente beigetragen, sondern darüber hinaus auch einen Beitrag für das Verständnis von Virus-Mensch-Interaktionen während der Latenzphase eines Tumor-Virus auf molekularer Ebene beitragen“, sagt Ritter.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?