Mit Antikörpern aus der Wüste zu den erkrankten Zellen

10.06.2014 - Deutschland

Der Einsatz von Nanopartikeln gilt in der Krebsforschung als vielversprechender Ansatz, um Tumorzellen aufzuspüren und zu bekämpfen. Bislang scheitert die Verwendung allerdings häufig daran, dass das menschliche Immunsystem sie als Fremdkörper erkennt und ausschleust, bevor sie ihre Aufgaben erfüllen können. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und des irischen University College in Dublin haben nun gemeinsam mit weiteren Kooperationspartnern Nanopartikel entwickelt, die sowohl die Abwehrsysteme des Körpers umgehen als auch ihren Weg zu den erkrankten Zellen finden können. Dafür verwendeten sie die Fragmente einer Art von Antikörpern, die nur bei Kamelen und Lamas vorkommen. Die kleinen Teilchen waren so selbst unter Bedingungen erfolgreich, die der Situation im Patienten sehr ähnlich sind.

Quelle: CBNI, UCD

Mit Hilfe von Proteinen können Nanopartikel so funktionalisiert werden, dass sie sich spezifisch an bestimmte Krebszellen binden. Dadurch wird es möglich, Tumore aufzuspüren.

„Wir müssen momentan drei große Herausforderungen meistern“, beschreibt Dr. Kristof Zarschler vom Helmholtz Virtuellen Institut NanoTracking am HZDR den aktuellen Stand der Forschung. „Zunächst müssen wir möglichst kleine Nanopartikel herstellen. Deren Oberfläche müssen wir anschließend so modifizieren, dass die Proteine im menschlichen Körper sie nicht umhüllen und auf diese Weise unwirksam machen. Und damit sie überhaupt ihre Aufgabe erfüllen können, müssen wir ihnen auch noch einen Weg zu den erkrankten Zellen zeigen.“ Um dies zu erreichen, haben die Rossendorfer Forscher Nanopartikel aus Siliziumdioxid mit Fragmenten von Kamel-Antikörpern kombiniert.

Im Gegensatz zu konventionellen Antikörpern, die aus zwei leichten und zwei schweren Protein-Ketten bestehen, sind sie bei Kamelen und Lamas weniger komplex aufgebaut und besitzen nur zwei schwere Ketten. „Aufgrund dieser vereinfachten Struktur lassen sie sich leichter herstellen als die normalen Antikörper“, erläutert Zarschler. „Da wir außerdem nur ein spezielles Fragment benötigen – nämlich den Teil des Moleküls, der an bestimmte Krebszellen bindet –, wird es möglich, die Nanopartikel viel kleiner zu gestalten.“ Durch Modifizierungen der Nanopartikel-Oberfläche wird es für das Immunsystem außerdem schwieriger, die körperfremden Stoffe zu erkennen. Dadurch gelangen die Nanopartikel überhaupt erst zu ihrem Ziel.

Denn im menschlichen Körper sollen die ultrakleinen Teilchen den Rezeptor des sogenannten Epidermalen Wachstumsfaktors (epidermal growth factor receptor, EGFR) aufspüren. Bei verschiedenen Tumorarten wird dieses Molekül vermehrt gebildet und/oder liegt in mutierter Form vor, was dazu führt, dass die Zellen unkontrolliert wachsen und sich vermehren. Bei Experimenten konnten die Rossendorfer Forscher zeigen, dass Nanopartikel, die mit den Fragmenten der Kamel-Antikörper kombiniert wurden, an den Krebszellen verstärkt binden. „Der EGFR ist quasi das Schloss, zu dem unser Antikörper wie ein Schlüssel passt“, beschreibt Zarschler den Vorgang.

Zu diesem Ergebnis kamen sie sogar bei Versuchen im menschlichen Blutserum – einem biologisch relevantem Milieu, wie es die Wissenschaftler formulieren: „Das bedeutet, dass wir die Tests unter Bedingungen durchgeführt haben, die der Realität im menschlichen Körper sehr ähnlich sind“, erklärt Dr. Holger Stephan, der das Projekt leitet. „Das Problem bei vielen Studien ist momentan, dass künstliche Umgebungen gewählt werden, in denen keine Störfaktoren vorkommen. Das liefert zwar schöne Ergebnisse, ist im Endeffekt aber nutzlos, da die Nanopartikel spätestens bei Experimenten unter komplexeren Bedingungen versagen. Diese Gefahr konnten wir in unserem Fall zumindest reduzieren.“

Bis die Nanopartikel eingesetzt werden können, um in Menschen Tumore zu diagnostizieren, wird nach Ansicht der Forscher allerdings noch einige Zeit vergehen. „Die erfolgreichen Tests haben uns einen weiteren Schritt nach vorne gebracht“, erzählt Stephan. „Der Weg in die Klinik ist trotzdem noch weit.“ Das Ziel der nächsten Stufe: die Nanopartikel, die derzeit einen Durchmesser von etwa 50 Nanometer haben, auf eine Größe von weniger als zehn Nanometer zu verkleinern. „Das wäre optimal“, erläutert Zarschler. „Dann würden sie nur kurze Zeit im Menschen verbleiben – gerade so lange, bis der Tumor aufgespürt ist.“

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Antikörper

Antikörper sind spezialisierte Moleküle unseres Immunsystems, die gezielt Krankheitserreger oder körperfremde Substanzen erkennen und neutralisieren können. Die Antikörperforschung in Biotech und Pharma hat dieses natürliche Abwehrpotenzial erkannt und arbeitet intensiv daran, es therapeutisch nutzbar zu machen. Von monoklonalen Antikörpern, die gegen Krebs oder Autoimmunerkrankungen eingesetzt werden, bis hin zu Antikörper-Drug-Konjugaten, die Medikamente gezielt zu Krankheitszellen transportieren – die Möglichkeiten sind enorm.

Themenwelt anzeigen
Themenwelt Antikörper

Themenwelt Antikörper

Antikörper sind spezialisierte Moleküle unseres Immunsystems, die gezielt Krankheitserreger oder körperfremde Substanzen erkennen und neutralisieren können. Die Antikörperforschung in Biotech und Pharma hat dieses natürliche Abwehrpotenzial erkannt und arbeitet intensiv daran, es therapeutisch nutzbar zu machen. Von monoklonalen Antikörpern, die gegen Krebs oder Autoimmunerkrankungen eingesetzt werden, bis hin zu Antikörper-Drug-Konjugaten, die Medikamente gezielt zu Krankheitszellen transportieren – die Möglichkeiten sind enorm.