Freie Richtungswahl: Neue Methode für Templat-gesteuerte DNA-Synthese in 3‘- und 5‘-Richtung
Der DNA-Doppelstrang wird in der Zelle für den Kopiervorgang streckenweise getrennt. Einer der Einzelstränge dient dann als „Kopiervorlage“ oder Templat. Polymerase-Enzyme knüpfen die jeweiligen Nukleotide schrittweise zum neuen Gegenstrang zusammen, ausgehend von einem „Anfangsstückchen“, einem Primer. Das Rückgrat eines DNA-Strangs ist eine alternierende Kette aus Zucker-Fünfringen und Phosphatgruppen. Die Kettenverknüpfung erfolgt an den Sauerstoffatomen Nr. 3‘ und Nr. 5‘ der Zucker, das natürliche Kettenwachstum läuft in 3‘-Richtung.
Eine Frage im Zusammenhang mit der Entstehung des Lebens lautet: Wie konnte die Natur DNA- oder RNA-Stränge kopieren, bevor es Polymerasen gab? Mit DNA-Syntheseapparaten können Chemiker seit den 80er Jahren zwar DNA-Stränge herstellen, aber ohne Templat, ohne Primer und nur mit der durch die Reihenfolge der Reagenzienzugabe vorgegebenen Sequenz. Allein sogenannte Schutzgruppen, die eine unkontrollierte Reaktion verhindern, und die programmierte Zuführung der Reagenzien sorgen für die korrekte Abfolge der Basen. So konnte die Natur sicherlich nicht vorgehen. Aber wie könnte eine templatgesteuerte Primerverlängerung rein chemisch, also ohne Enzyme, funktionieren?
Inzwischen wurden Ansätze für eine Methode entwickelt, die „Chemical Primer Extension“ genannt wird und die Reaktion aktivierter Nukleotide mit dem Ende eines leicht modifizierten DNA-Primers beinhalten. Diese haben Clemens Richert, Andreas Kaiser und Sebastan Spies an der Universität Stuttgart nun weiterentwickelt. Sie fanden eine Schutzgruppe, die so schonend entfernt werden kann, dass DNA-Duplexe aus Primer und Templat dabei nicht auseinanderfallen. Mit ihr kann die Reaktivität von Nukleotiden und Primer-Terminus gezielt an- und abgeschaltet werden und die Sequenzinformation des Templatstranges Nukleotid für Nukleotid ausgelesen werden. Damit das klappt, sind sowohl Templat als auch Primer an kleinen Kügelchen fixiert. Wie im Syntheseautomat können gezielt Reagenzien und Bausteine an den Kügelchen vorbei gespült werden. Der Primer bindet an das Templat durch Basenpaarung. An die nächste freie Bindungsstelle des Templats dockt dann ein passendes Nukleotid aus der umgebenden Lösung an. Über aktivierte Phosphat-Einheiten verbinden sich Nukleotid und reaktives Ende des Primers. Die Stellen, die reagieren sollen, wurden insgesamt chemisch so verändert, dass sie reaktiver als bei natürlicher DNA sind. Das Besondere: Die Kettenverlängerung kann nun wahlweise in die 3‘- oder die 5‘-Richtung laufen. Für letzteres gibt es in der Natur kein Vorbild.
Bisher ist das Verfahren noch recht langsam und auf kurze Abschnitte beschränkt. Es sollte sich durch weitere Optimierung der Reaktionsbedingungen und stärkere Automatisierung weiter verbessern lassen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.