Infektionskrankheiten und Sex: Ein Cocktail, der die Variation bei Immungenen aufrechterhält
© Milinski/MPI für Evolutionsbiologie
Organtransplantationen sind heutzutage meist erfolgreich. Der klinische Erfolg hängt aber nach wie vor davon ab, ob es gelingt, für einen Organ-Empfänger einen passenden Spender zu finden. Passend heißt, dass sich bestimmte grundlegende Gene des Immunsystems (beim Menschen HLA, engl. Human Leucocyte Antigen) bei Spender und Empfänger nicht unterscheiden dürfen. Wenn die HLA-Gene sich unterscheiden, erkennen die Empfänger-Moleküle das neue Organ als „fremd” und starten eine Immunreaktion gegen das implantierte Organ. Innerhalb der menschlichen Population gibt es jedoch eine große Variabilität in diesen HLA-Genen: Angesichts von mehr als 1000 Varianten sind zwei zufällig herausgegriffene Menschen ziemlich sicher unterschiedlich und daher nicht kompatibel.
Was ein Problem für die Transplantation einer Leber ist, ist bei der Suche nach Partnern für die Fortpflanzung ein Vorteil. Menschen wie auch Fische und Mäuse bevorzugen Partner, die die beste Ergänzung zu den eigenen HLA-Genvarianten anbieten. Die Immungen-Ausstattung eines potenziellen Partners wird dabei über den Körpergeruch wahrgenommen. Wir haben diese Bevorzugung im Zuge der Evolution entwickelt, um unsere Kinder mit dem besten Satz von Immungenen auszustatten und sie damit bestmöglich gegen Infektionskrankheiten zu schützen.
Um den jeweils am besten passenden Partner wählen zu können, ist es gut, dass es viele Partner mit einem unterschiedlichen Satz an Immungenen „auf dem Markt” gibt. Diese hohe Variabilität in individuellen HLA-Genen, die man Polymorphismus nennt, ist außergewöhnlich, denn in allen anderen Genen sind sich Menschen einander tatsächlich sehr ähnlich. Es ist immer noch ein großes Rätsel, welche Selektionskräfte diesen Polymorphismus aufrechterhalten, der so wichtig ist, um unsere Kinder mit einer optimalen Immungen-Mischung zu versorgen, aber Transplantationen so kompliziert macht.
Wissenschaftler vom Max-Planck-Institut für Evolutionsbiologie in Plön und vom GEOMAR | Helmholtz-Zentrum für Ozeanforschung Kiel sind dieser Frage mit der Hilfe von Stichlingen nachgegangen. Denn tatsächlich ist der HLA-Polymorphismus, bei ihnen MHC genannt (engl. Major Histocompatibility Complex), bei allen Wirbeltieren zu beobachten. Wie beim HLA ist die Hauptfunktion der MHC-Gene, den Organismus gegen Infektionskrankheiten zu schützen. „Es gab Vermutungen, dass der MHC-Polymorphismus in natürlichen Populationen durch von Generation zu Generation wechselnde Infektionskrankheiten aufrechterhalten wird“, erklärt Manfred Milinski, Direktor am Plöner Max-Planck-Institut.
Um diese Idee zu testen, haben die Wissenschaftler in einer großen Experimentalanlage am Plöner Institut sechs genetisch identische Stichlingspopulationen jeweils einem von zwei häufigen Stichlingsparasiten ausgesetzt. Die Forscher stellten fest, dass in allen sechs Populationen nur die MHC-Gene in der Generation der Nachkommen häufiger geworden waren, die Resistenz gegen den den jeweiligen Parasiten boten, dem die Eltern ausgesetzt waren. „Das heißt, dass sich die gerade vorteilhaften MHC-Varianten in der Population ausbreiten, so dass die nächste Generation resistenter gegen diesen Erreger ist – bis ein anderer Krankheitserreger auftaucht“, erläutert Christophe Eizaguirre, der Erstautor der Studie.
Bei Erscheinen eines neuen Erregers sind wieder andere Individuen im Vorteil, die zufällig die dann passenden Resistenz-MHC-Varianten tragen. Sie bleiben gesund und haben daher mehr Nachkommen. Die neue adaptive MHC-Variante kann sich nun entsprechend ausbreiten, usw.. Auf diese Weise wird der enorme MHC-Polymorphismus aufrechterhalten – und macht weiterhin Probleme bei Transplantationen, aber hilft uns auch, in jeder Generation gesunde Kinder zu produzieren.