Springende Gene im Menschen stehlen fremde Proteine – Bedeutung für Stammzellanwendungen?
'Springende Gene' sind die Ursache für eine Reihe genetischer Krankheiten und werden mit der Entstehung mancher Tumoren in Zusammenhang gebracht. Forscher des Paul-Ehrlich-Instituts haben aufgeklärt, über welchen Mechanismus sich eine Gruppe dieser 'Retrotransposons', die SVA-Elemente, im menschlichen Genom ausbreitet. Wichtig können die Erkenntnisse insbesondere für therapeutische Stammzellanwendungen sein. Genetische Stabilität der Zellen ist eine Voraussetzung für die Sicherheit von Stammzelltherapeutika.
Copy & paste – kaum jemand denkt dabei nicht sofort an Computeranwendungen. Doch auch in der Natur findet diese Methode bereits seit Millionen von Jahren Anwendung: Eine Gruppe von Elementen in unserem Genom, sogenannte 'Retrotransposons', duplizieren und verteilen sich über copy & paste an ganz unterschiedlichen Stellen im menschlichen Genom. Wie Viren haben diese 'Parasiten des Genoms' nur das Ziel, sich selbst zu vermehren – in diesem Fall im menschlichen Genom. Ein Prinzip, das evolutionär betrachtet durchaus sinnvoll ist: Über springende Gene wird die genetische Diversifikation von Lebewesen vorangetrieben, bei der immer wieder zufällig auch evolutionär vorteilhafte Varianten entstehen. Dabei sind diese Elemente und die DNA-Sprünge keine seltenen Ereignisse: Immerhin 42 Prozent unseres Genoms bestehen aus solchen Elementen. Für das Individuum können die Transpositionen allerdings auch sehr schädlich sein, weil durch diese Prozesse genetische Erkrankungen oder auch Krebserkrankungen hervorgerufen werden können.
Forscher des Paul-Ehrlich-Instituts um Prof. Gerald Schumann, Abteilung Medizinische Biotechnologie, haben jetzt herausgefunden, über welchen Weg der Copy & paste-Mechanismus der sogenannten SVA-Elemente (SINE-VNTR-Alus) in menschlichen Zellen funktioniert. Ähnlich wie sich Viren für ihre Vermehrung der Proteinmaschinerie der Wirtszelle bedienen, so brauchen auch SVA-Elemente fremde Hilfe: Sie nutzen die Proteinmaschinerie einer anderen Gruppe von Retrotransposons, der LINE-1-Elemente. Dies bewiesen die Forscher des Paul-Ehrlich-Instituts, indem sie SVA-Elemente aus einer menschlichen Zelle entnahmen und einen zusätzlichen Genabschnitt, der eine Resistenz gegenüber dem Antibiotikum Neomycin vermittelt, einbauten. Der Trick dabei: Der genetische Abschnitt für diese Neomycin-Resistenz war zum einen noch durch ein Intron unterbrochen. Zudem war dieser DNA-Abschnitt spiegelbildlich eingebaut. Er musste also erst in cDNA umgeschrieben und anschließend ins Genom integriert werden, bevor die DNA korrekt abgelesen und das Protein für die Neomycin-Resistenz gebildet werden konnte. Das Umschreiben dieser RNA in DNA sowie die Integration ins Genom kann nur von einer speziellen Version des Enzyms 'Reverse Transkriptase' vorgenommen werden. Als einzige Quelle kam in den Zellkulturexperimenten die LINE-1-Proteinmaschinerie in Frage. Mit verschiedenen Zellkulturexperimenten konnten Schumann und Kollegen den Nachweis erbringen, dass SVA auf die Hilfe der LINE-1 Proteinmaschinerie angewiesen ist. Für die Kontrollexperimente arbeiteten sie mit Mutanten, bei denen die Reverse Transkriptase der LINE-1-Elemente nicht mehr funktionsfähig war.
Diese wichtige Erkenntnis lässt es möglich erscheinen, mit einer Klappe gleich zwei Fliegen zu schlagen: „Der Mobilisierung humaner Retrotransposons konnten bisher etwa 200 Erkrankungsfälle eindeutig zugeschrieben werden. Wir wissen seit Kurzem, dass diese mutagenen mobilen Elemente auch in menschlichen Stammzellen, die therapeutische Anwendung finden sollen, aktiv sind. Gelingt es, gezielt die LINE-1-Proteinmaschinerie zu blockieren, könnten vielleicht mit einem Schlag alle Gruppen springender Gene ruhiggestellt werden“, beschreibt Schumann die Bedeutung dieser Forschungsergebnisse und die Zielsetzung der weiteren Arbeit.
„Für das Paul-Ehrlich-Institut ist diese Forschung sehr wichtig, denn zu unseren Aufgaben gehört die Prüfung der Qualität und Sicherheit von Stammzellen und anderen Zelltherapeutika für die Anwendung am Menschen. Die genetische Stabilität der Stammzellen für die Anwendung am Menschen wird bei zukünftigen Zulassungsprozessen ein wichtiger Aspekt sein, den das Paul-Ehrlich-Institut – insbesondere auch im Hinblick auf ihre Sicherheit – beurteilen wird“, erläutert Prof. Klaus Cichutek, Präsident des PEI, die mehrfache Bedeutung dieser Forschung.