Wie Schrittmacherzellen im Takt bleiben
UKJ-Physiologen klären die Steuerung von Schrittmacher-Ionenkanälen auf
Ionenkanäle sind keine starren Öffnungen, durch die Kalium- oder Natrium-Ionen die Zellmembran passieren. Sie besitzen wie Katzenklappe oder Autotür verschiedene Größen, Öffnungsmechanismen und Durchlässigkeit. Die Zelle kann bei Bedarf auch neue Ionenkanäle bilden oder nicht benötigte abbauen. Die Kanäle bestehen aus Eiweißmolekülen in der Zellmembran, die durch Spannungsunterschiede oder das Andocken von passenden Botenmolekülen ihre Form so verändern, dass sie Ionen durchlassen können. Schrittmacher-Ionenkanäle steuern die rhythmische Tätigkeit von spezifischen Zellen, zum Beispiel die Kontraktion von Herzmuskelzellen und den Ruherhythmus bestimmter Nervenzellen im Tiefschlaf. Wie die Unruhe in einer Pendeluhr triggert ein Wechselspiel von Ladungstrennung und Ladungsausgleich in den Zellen lebenswichtige Prozesse in Herz und Hirn.
„Unsere Schrittmacherkanäle bestehen aus vier gleichen Proteinbausteinen, die je mit einer spannungssensitiven Region und einer Bindungsregion für Botenmoleküle ausgestattet sind“, sagt Dr. Jana Kusch. „Wir wollten wissen, wie die beiden Aktivierungsmechanismen zusammenspielen.“ Dazu brachte die Physiologin Eizellen des Krallenfrosches durch eingeschleuste DNA dazu, eine Vielzahl genau solcher Ionenkanäle in ihrer Membran auszubilden. Dann untersuchte sie an einem Patch-Clamp-Messplatz den Stromfluss durch sehr kleine Stücke der Zellmembran, und wie sich dieser Stromfluss in Abhängigkeit von der elektrischen Spannung an der Membran und der Bindung der Botenstoffmoleküle ändert. Um das Bindungsverhalten beurteilen zu können, mussten die Wissenschaftler einen spezifischen Fluoreszenzfarbstoff entwickeln.
„Die Spannungsdifferenz ist Voraussetzung für die Aktivierung des Schrittmacherkanals, aber erst, wenn zusätzlich bestimmte Botenstoffe, sogenannte zyklische Nukleotide, gebunden werden, erreicht er seine volle Aktivität“, nennt Prof. Klaus Benndorf, Direktor des Instituts für Physiologie II am Jenaer Uniklinikum, ein wesentliches Ergebnis der Messungen. Ist der Kanal aktiviert, fließen die Ionen durch die Membran, vermindern die Membranspannung und der Ionenkanal schließt sich wieder, er wird deaktiviert. Dieser Zyklus läuft umso schneller ab, je höher die Konzentration der Botenstoffe ist. Umgekehrt also beschleunigt die Bindung der spezifischen Botenmoleküle die Spannungsänderung. So können zum Beispiel Herzmuskelzellen ihre Leistung bei Bedarf steigern.
„Das Erstaunliche dabei ist, dass wie bei ähnlichen Ionenkanälen in Riechsinneszellen das Andocken von zwei Botenstoffmolekülen an den vier möglichen Bindungsregionen für die maximale Aktivierung ausreicht“, so der Physiologe.
Originalveröffentlichung: J. Kusch, C. Biskup, S. Thon, E. Schulz, V. Nache, T. Zimmer, F. Schwede and K. Benndorf; "Interdependence of Receptor Activation and Ligand Binding in HCN2 Pacemaker Channels"; Neuron 2010
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.