Biliproteine - leicht gemacht: Fluoreszierende und durch Licht schaltbare Mikroskopie-Marker

30.06.2010 - Deutschland

Biliproteine werden in den Biowissenschaften bei bildgebenden Verfahren als Hilfsmittel eingesetzt, um definierte Strukturen und Prozesse sichtbar zu machen. Allerdings konnten die farbigen Bausteine in lebenden Organismen bisher nur relativ aufwändig in mehreren Schritten hergestellt werden. In Zusammenarbeit mit Wissenschaftlern um Professor Kai-Hong Zhao an der Huazhong-Universität im chinesischen Wuhan hat ein Team um den LMU-Biologen Professor Hugo Scheer nun ein neues Verfahren entwickelt, mit dem die farbigen Proteine direkt in einem Schritt synthetisiert werden.

„Damit können Biliproteine nun genauso flexibel eingesetzt werden wie die fluoreszierenden Proteine vom GFP-Typ“ erläutert Scheer. „Zusätzlich haben sie den entscheidenden Vorteil, dass man sie zwischen zwei verschiedenen Zuständen hin- und herschalten kann. Dies könnte insbesondere bei der Verfolgung von Stoff- und Signalflüssen und in neuen, höchstauflösenden mikroskopischen Verfahren von Vorteil sein.“

Biliproteine sind eine besondere Art von Zellbausteinen: Sie bestehen aus einem herkömmlichen Protein, an das ein oder mehrere Pigmentmoleküle, die Chromophore, angehängt sind. Phycobiliproteine von Blaualgen (Cyanobakterien) zeigen bei Bestrahlung mit Licht eine intensive, fluoreszierende Farbe. Als Lichtsammler ermöglichen sie es den Cyanobakterien und bestimmten Algen, sich selbst in Regionen mit sehr geringem Lichteinfall anzusiedeln und dort Photosynthese zu betreiben - also Kohlendioxid und Wasser mithilfe von Licht in Energie umzuwandeln. Ähnlich wie das grün fluoreszierende Protein GFP können Biliproteine bei bildgebenden Verfahren eingesetzt werden, um bestimmte zelluläre Bestandteile zu markieren und so deren exakte räumliche und zeitliche Verteilung im lebenden Gewebe sichtbar zu machen. Dabei decken sie das gesamte sichtbare Spektrum und den nahen Infrarot-Bereich ab.

Allerdings hatten Proteine vom GFP-Typ bisher den Vorteil, dass sie sich relativ einfach in beliebigen Organismen bilden lassen. „Wenn man das Gen eines solchen fluoreszierenden Proteins mit dem eines interessierenden Ziel-Gen koppelt, werden beim Anschalten des Ziel-Gens das zelluläre Protein und das fluoreszierende Protein gleichzeitig synthetisiert. Das leicht zu detektierende fluoreszierende Protein wurde so als ein Marker für viele Gene in einer großen Zahl von Organismen von Bakterium zum Säugetier und der höheren Pflanze eingesetzt“, so Scheer. Dies war möglich, weil bei den fluoreszierenden Proteinen der farbig fluoreszierende Bestandteil, der Chromophor selbsttätig (autokatalytisch) aus der Proteinkette gebildet wird. Bei Biliproteinen musste dagegen der der Chromophor zunächst getrennt synthetisiert werden und konnte erst in einem zweiten Schritt in das gesuchte Protein eingebaut werden. Das Team um Scheer hat deshalb nun eine Methode entwickelt, mit der auch bei Biliproteinen das Trägerprotein und der Chromophor in einem Schritt gebildet werden.

Dazu stellten die Biowissenschaftler ein Fusions-Gen her, in dem die genetische Information zur Synthese des Chromophors mit derjenigen des Träger-Proteins verbunden wird. „Mithilfe dieses Fusions-Gens wird nicht nur das Trägerprotein hergestellt“, erläutert Scheer. „Andere Bereiche des Fusionsgens sind dafür verantwortlich, dass gleichzeitig aus der eisenhaltigen Verbindung Häm der Chromophor gebildet wird, und dieser dann selbsttätig an das Trägerprotein bindet“. Häme sind eine Stoffgruppe, die unter anderem im Hämoglobin, dem „Farbstoff“ der roten Blutkörperchen, vorkommt. „Dadurch, dass Häm in nahezu allen tierischen, pflanzlichen und bakteriellen Zellen vorhanden ist, sollten die so hergestellten Biliproteine ähnlich flexibel einsetzbar sein wie Proteine vom GFP-Typ“, sagt Scheer.

Ein wesentlicher Vorteil der Biliproteine ist, dass sich viele ihrer Vertreter zwischen zwei unterschiedlich farbigen Zuständen durch Licht unterschiedlicher Farbe hin- und herschalten lassen. Dazu gehören vor allem die Phytochrome und die verwandten Cyanobakteriochrome, welche Pflanzen und vielen Bakterien als Sehfarbstoffe dienen. „Diese Schalt-Möglichkeit ist besonders günstig, wenn man zeitliche Prozesse oder Signalflüsse in lebenden Zellen, in Organen oder im gesamten Körper beobachten will“, betont Scheer. „Sie ist außerdem die Basis für neuartige höchstauflösende Mikroskopie-Techniken.“ Dazu gehört etwa PALM, kurz für „photoactivated localization microscopy“. Außerdem decken Biliproteine nahezu den gesamten Spektralbereich des farbigen Lichts ab. Damit könnten künftig verschiedene Prozesse mithilfe unterschiedlich gefärbter fluoreszierender oder durch Licht schaltbarer Proteine gleichzeitig abgebildet werden. „Proteine vom GFP-Typ und Biliproteine könnten sich auch ergänzen, unter anderem für vielfältige neue Anwendungen in der optischen Mikroskopie“, sagt Scheer.

Originalveröffentlichung: Juan Zhang, Xian-Jun Wu, Zhi-Bin Wang, Yu Chen, Xing Wang, Ming Zhou, Hugo Scheer, Kai-Hong Zhao; „Single Fused Gene Approach to Photo-Switchable and Fluorescent Biliproteins”; Angewandte Chemie online, 28. Juni 2010

Weitere News aus dem Ressort Forschung & Entwicklung

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller