Kritischer Regulationsschritt bei Malariaerregern entschlüsselt

16.06.2010 - Deutschland

Wissenschaftler des Bernhard-Nocht- Instituts für Tropenmedizin (BNI) und des Burnet Instituts in Melbourne, Australien, haben die biochemische Reaktion entschlüsselt, die ein Signal für das Eindringen von Malariaparasiten in rote Blutkörperchen des Menschen gibt. Die Ergebnisse eröffnen neue Ansätze zur Prävention und Behandlung der Malaria.

Noch immer gibt es keinen Impfstoff, der zuverlässig vor Malaria schützt, und die Malariaparasiten entwickeln immer wieder Resistenzen gegen die verfügbaren Medikamente. Voraussetzung für das Überleben der Malariaparasiten im Menschen und insbesondere auch für die lebensbedrohlichen Komplikationen der Malaria ist das Eindringen der Parasiten in rote Blutkörperchen. „Dazu heften sich die Parasiten zunächst fest an die Blutkörperchen an und senden dann eine Art inneres Signal, das die Invasion in die Zellen auslöst. Wenn es uns gelingt, diesen Mechanismus zu unterbinden, würden Malariaerreger keine Chance mehr haben, uns zu infizieren“, erklärt Dr. Tim Gilberger vom BNI. Deshalb wollen Malariaforscher den Prozess der Invasion roter Blutkörperchen im Detail verstehen. In Kooperation mit Wissenschaftlern des Burnet Instituts in Melbourne haben sie nun einen entscheidenden Aktivierungsprozess der Invasionsmaschinerie entschlüsselt.

Am Invasionsprozess ist ein Protein (AMA1) beteiligt, das sich auf der Oberfläche des Malariaparasiten befindet. Dieses Oberflächenprotein bindet den Malariaparasiten eng an das rote Blutkörperchen. Jetzt fanden die Wissenschaftler heraus, dass der Parasit dieses Oberflächenprotein zunächst enzymatisch aktivieren muss. Dazu ist die sogenannte Proteinkinase A notwendig, die das Oberflächenprotein mit einer Phosphatgruppe markiert und dadurch das notwendige Signal für die Invasion auslöst. „Jeder Malariaparasit hat nur eine einzige Chance, eine geeignete Zelle zu infizieren, oder er ist zum Sterben verurteilt. Die Schlüsselprozesse dieses Vorgangs zu inhibieren, ist ein attraktiver Ansatzpunkt für Impfstoffe und Medikamente“, sagt Gilberger.

Etwa 40 Prozent der Weltbevölkerung sind der Malaria ausgesetzt, mit jährlich mehr als 500 Millionen registrierten Fällen. Die Krankheit ist für mehr als eine Million Todesfälle pro Jahr verantwortlich.

Originalveröffentlichung: Leykauf K, et al. (2010); "Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite"; PLoS Pathog. Jun 3;6(6):e100094

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Polyethersulfone Ultrafilter

Polyethersulfone Ultrafilter von Sartorius

Zuverlässige Filtration mit PESU-Membranen

Perfekt für Biotechnologie und Pharma, widersteht Sterilisation und hohen Temperaturen

Membranfilter
Hydrosart® Microfilter

Hydrosart® Microfilter von Sartorius

Hydrophile Mikrofilter für Bioprozesse

Minimale Proteinadsorption und hohe Durchflussraten

Mikrofilter
Hydrosart® Ultrafilter

Hydrosart® Ultrafilter von Sartorius

Effiziente Ultrafiltration für Biotech und Pharma

Maximale Durchflussraten und minimaler Proteinverlust mit Hydrosart®-Membranen

Ultrafiltrationsmembranen
Polyethersulfone Microfilter

Polyethersulfone Microfilter von Sartorius

Biotechnologische Filtration leicht gemacht

Hochstabile 0,1 µm PESU-Membranen für maximale Effizienz

Mikrofilter
Sartobind® Rapid A

Sartobind® Rapid A von Sartorius

Effiziente Chromatographie mit Einweg-Membranen

Steigern Sie die Produktivität und senken Sie Kosten mit schnellen Zykluszeiten

Membranen
Sartopore® Platinum

Sartopore® Platinum von Sartorius

Effiziente Filtration mit minimaler Proteinadsorption

Reduziert Spülvolumen um 95 % und bietet 1 m² Filtrationsfläche pro 10"

Filtermembranen
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?