Kostengünstiges Baukastensystem für die optische Bildgebung aus dem 3D-Drucker
Wie beim Bauen mit Legosteinen
Gabriel Moya Muñoz
Sowohl in den Biowissenschaften, der Biotechnologie als auch in medizinischen Anwendungen sind moderne Lichtmikroskope und spektroskopische Verfahren essenzielle Werkzeuge, beispielsweise für molekulare Untersuchungen. Um deren Empfindlichkeit und Selektivität weiter zu erhöhen, werden sowohl Verfahren als auch Instrumente laufend in spezialisierten Laboren weiterentwickelt. Häufig dauert es jedoch mehrere Jahre, bis die neuen Technologien tatsächlich für Anwender*innen in den Biowissenschaften oder im klinischen Umfeld verfügbar sind. Die Arbeitsgruppe von Prof. Thorben Cordes hat deswegen das neue Konzept „Brick-MIC“ entwickelt, bei dem alle Komponenten zum Aufbau für optische Mikroskopie- oder Spektroskopie-Verfahren im 3D-Druck gefertigt und flexibel miteinander kombiniert werden können – wie beim Bauen mit Legosteinen, auf Englisch „bricks“ genannt.
Flexibler Einsatz
Mit dem kostengünstigen Open-Source-System soll es möglich sein, durch einen einfachen Austausch der verschiedenen Komponenten unterschiedliche Modalitäten für spezielle Experimente zu realisieren. Durch die handliche Größe soll Brick-MIC außerdem für einen Einsatz bei der Feldforschung oder an Standorten mit besonderen Herausforderungen wie Hochsicherheitslaboren geeignet sein. Prof. Thorben Cordes erklärt: „Für die Montage der unterschiedlichen Teile werden keine Werkzeuge benötigt und optische Komponenten werden fest mit dem Gehäuse verbunden.“ Das habe auch Vorteile für die Stabilität: So sind beispielsweise unterschiedliche optische und mechanische Elemente in nur einem Bauteil zusammengefasst, wodurch das System weniger störungsanfällig sei.
Die Wissenschaftler*innen haben ihr System für die Nutzung verschiedener hochempfindlicher Fluoreszenzmikroskopie-Techniken getestet, für die normalerweise teure Geräte mit Investitionskosten über 100.000 Euro benötigt werden. Gabriel Moya sagt: „Die Qualität der Daten und Bilder von Brick-MIC ist vergleichbar mit denen von Mikroskopen, die speziell für die jeweilige Technik konzipiert sind. Diese sind jedoch in der kommerziellen Anschaffung sehr teuer – oder man muss ein Spezialist in optischen Verfahren sein und das Mikroskop selbst bauen. Mit Brick-MIC können wir kostengünstig verschiedenste hochmoderne Mikroskopieverfahren für Anwender etablieren, einschließlich Einzelmoleküldetektion und hochauflösender optischer Mikroskopie. Damit könnten beispielsweise auch Krankenhäuser Zugang zu neuartigen Verfahren erhalten, um direkt Viren, Bakterien oder Krankheitsmarker nachzuweisen.“
Verfahren für direkten Virusnachweis getestet
Dazu hat die Arbeitsgruppe von Prof. Thorben Cordes zusammen mit einem Team der Hebrew University Jerusalem um Prof. Eitan Lerner bereits Tests durchgeführt. Die Wissenschaftler*innen konnten ein Durchflusszytometrie-Verfahren basierend auf einem Brick-MIC entwickeln, mit dem ein direkter Virusnachweis in Flüssigkeiten möglich ist. „Wir pumpen die Viren und andere leuchtende Partikel durch eine kleine Glaskammer und sehen immer dann ein kurzes Signal, wenn die Viren im Mikroskop ankommen. Mithilfe des Verfahrens war der direkte Nachweis von SARS-CoV-2-Viruspartikeln bereits in weniger als 15 Minuten möglich“, erklärt Gabriel Moya.
Um die Brick-MIC Plattform weiterzuentwickeln, arbeiten Cordes und Moya Muñoz derzeit gemeinsam in Dortmund an weiteren Anwendungen der Plattform, auch mit industriellen Partnern. Prof. Thorben Cordes sagt: „Wir erwarten ein breites Anwendungsspektrum im Bereich der akademischen und industriellen Forschung: Von der Fluoreszenzbildgebung in der Pharmazie über medizinische Zellforschungsverfahren wie die Tumormarkierung bis hin zur Überwachung von Ökosystemen durch Probenanalysen vor Ort.“
Originalveröffentlichung
Gabriel G. Moya Muñoz, Oliver Brix, Philipp Klocke, Paul D. Harris, Jorge R. Luna Piedra, Nicolas D. Wendler, Eitan Lerner, Niels Zijlstra, Thorben Cordes; "Single-molecule detection and super-resolution imaging with a portable and adaptable 3D-printed microscopy platform (Brick-MIC)"; Science Advances, Volume 10