Ein wenig Licht in das Dunkel des Proteoms

Chemoproteomik zeigt, wo HDAC-Medikamente wirken

01.07.2022 - Deutschland

Die auf Massenspektrometrie basierende Proteomik ist die Big-Data-Wissenschaft der Proteine. Sie erlaubt es, die Häufigkeit von tausenden von Proteinen in einer Probe auf einmal zu erfassen. Daher eignet sie sich besonders gut, um herauszufinden, welche Proteine mit Medikamenten zusammenwirken, welche also von bestimmten Molekülen angegriffen werden. Daran forscht ein internationales Team mittels chemischer Proteomik.

Uli Benz / TUM

Dr. Guillaume Médard vom Lehrstuhl für Proteomik und Bioanalytik und seine Forschungsgruppe im Labor.

Histon-Deacetylase (HDAC)-Inhibitoren sind eine Klasse von Medikamenten, die in der Onkologie eingesetzt werden. Ein Team von Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität München, der Cornell University in Ithaca (USA), des Deutschen Krebsforschungszentrums (DKFZ) in Heidelberg und der Martin-Luther-Universität Halle-Wittenberg, hat die Effekte einiger HDAC-Medikamente genauer untersucht. Das Forschungsteam wollte wissen, ob diese Medikamente auch andere Proteine als die HDACs, die sie hemmen sollen, angreifen. 

„Um das herauszufinden, haben wir zunächst neue chemische Werkzeuge - die so genannten Affinitätsmatrizen - entwickelt, die es uns erlauben, HDACs systematisch zu profilieren", erklärt Dr. Guillaume Médard, Gruppenleiter für chemische Proteomik am Lehrstuhl für Proteomik und Bioanalytik unter Leitung von Prof. Bernhard Küster.

Profil von HDAC-Medikamenten durch chemische Proteomik

„Ich habe von 53 Medikamenten ein Profil erstellt", erklärt Severin Lechner, Doktorand an der TUM School of Life Sciences. „Die meisten von ihnen, aber nicht alle, trafen ihr beabsichtigtes HDAC-Ziel. Es gab aber auch einige Überraschungen. Medikamente, die in hunderten von wissenschaftlichen Studien eingesetzt werden, waren nicht so selektiv wie angenommen. Viele hatten zusätzliche Ziele, die bisher noch nicht bekannt waren.“

Diese Ergebnisse unterstreichen die Leistungsfähigkeit proteomischer Ansätze, die die Bindung von Medikamenten an tausende von Proteinen gleichzeitig untersuchen. Schließlich konnten einige Moleküle mit herausragender Selektivität identifiziert werden. Sie gelten damit als HDAC-Hemmstoffe der Wahl für zukünftige wissenschaftliche Studien. 

Wo die HDAC-Medikamente wirken

„Das überraschendste Ergebnis war, dass das Protein MBLAC2 ein bisher unbekanntes Ziel für die Hälfte der untersuchten Moleküle ist. Die Interaktion der Wirkstoffe mit diesem ungwollten Zielprotein könnte zum Beispiel für gewisse Nebenwirkungen der Arzneistoffe verantwortlich sein", so Lechner. Das Protein MBLAC2 war bis dato kaum charakterisiert. Zufälligerweise forschte das Team von Prof. Maurine Linder an der Cornell University gerade daran, als es auch bei den Weihenstephaner Forschenden in den Fokus rückte. Im Rahmen ihrer Zusammenarbeit bestätigten die beiden Gruppen, dass das Protein seine Funktion durch die Medikamente verliert. 

Mit der Gruppe von Prof. Michael Pfaffl an der TUM wies Lechner, angeregt durch unerklärliche Effekte einiger Medikamente, zudem nach, dass die Hemmung von MBLAC2 zu einer Anhäufung von extrazellulären Vesikeln außerhalb der Zelle führt. Extrazelluläre Vesikel sind kleine membranumschlossene Partikel, die von Zellen ausgeschieden und durch den ganzen Körper transportiert werden, um Biomoleküle und Informationen zwischen Zellen und Geweben zu übertragen. 

Grundlagenforschung für die Arzneimittel von morgen

„Wir haben einen neuen Akteur in diesem Bereich der Biologie entdeckt. Dieser umfasst vor allem Exosomen – virusgroße Vesikel, die von jeder Zelle produziert werden und für die interzelluläre Kommunikation zuständig sind. Exosomen spielen eine entscheidende Rolle in der Neurologie, Immunologie und Onkologie", erklärt Médard. „Jetzt entwerfen wir Moleküle, die nur MBLAC2 treffen, damit wir dieses Protein in einer Reihe von Modellsystemen weiter untersuchen können." 

Diese Studie stellt eine wichtige Grundlage für alle dar, die HDAC-Inhibitoren zur Erforschung ihrer Biologie oder für therapeutische Zwecke einsetzen wollen. Sie hilft bei der Auswahl des richtigen chemischen Werkzeugs. Gleichzeitig bildet sie auch einen wertvollen Datensatz für medizinische Chemiker, um zu verstehen, wie chemische Strukturen im Hinblick auf die Wirksamkeit und Selektivität von Molekülen zusammenhängen, um die Arzneimittel von morgen herzustellen. 

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Massenspektrometrie

Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!

3 Produkte
3 Broschüren
Themenwelt anzeigen
Themenwelt Massenspektrometrie

Themenwelt Massenspektrometrie

Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!

3 Produkte
3 Broschüren