Wie Zellen DNA-Schäden tolerieren
MDC-Forscher identifizieren Startsignal für Zell-Überlebensprogramm
Jeden Tag wird die DNA menschlicher Zellen zehntausendfach geschädigt. Auslöser sind unter anderem UV-Strahlen, Fehler bei der Zellteilung sowie DNA schädigende Chemikalien und intrazelluläre Stoffwechselprodukte. Schäden an der Erbsubstanz können schwere Krankheiten wie Krebs zur Folge haben. Der Körper verfügt jedoch über ein sehr komplexes System, das die DNA-Schäden innerhalb von Sekunden erkennt und dafür sorgt, dass sie behoben werden. Bei massiven DNA-Schäden kann die betroffene Zelle aber durch den sogenannten programmierten Zelltod (Apoptose) zerstört werden.
Apoptose ist ein Schutzprogramm, welches defekte Zellen in den Selbstmord treibt und damit den Organismus als Ganzes vor Schaden bewahrt. Bei der Aktivierung dieses zellulären Selbstmord-Programms hat der Genschalter p53, auch als "Wächter des Genoms" bezeichnet, eine zentrale Funktion. Doch nicht immer gelingt es ihm, dieses Schutzprogramm anzuschalten.
Als Gegenspieler von p53 fungiert der Genschalter NF-kappaB, der seinerseits ein Überlebensprogramm aktiviert, das die geschädigten Zellen vor dem Untergang bewahrt. Die Aktivierung dieses Programms durch NF-kappaB wird als eine der möglichen Ursachen für häufig auftretende Resistenzen gegen Chemo- und Strahlentherapie angenommen, die eine erfolgreiche Behandlung von Tumorerkrankungen verhindern.
Der Genschalter NF-kappaB steuert aber nicht nur zelluläre Überlebensprogramme, sondern spielt auch im Immunsystem und bei Entzündungprozessen eine wichtige Rolle. NF-kappaB kann durch eine Vielzahl außer- und innerzellulärer Stimuli angeschaltet werden. Eine derartige Stimulation verändert die Aktivität Protein-gesteuerter Signalwege, die schließlich NF-kappaB in einen aktiven Zustand versetzen.
Für verschiedene externe Stimuli konnte der Prozess der Signalweiterleitung in den vergangenen Jahren aufgeklärt werden. Im Gegensatz dazu war es noch weitgehend unklar, wie DNA-Schäden das Anschalten von NF-kappaB verursachen. Forschern des MDC ist es jetzt gelungen, Licht in das Dunkel dieses speziellen Signalwegs zu bringen.
Startsignal identifiziert
Prof. Scheidereit und seine Mitarbeiter Michael Stilmann und Dr. Hinz fanden heraus, dass der DNA-Schadensdetektor PARP-1 eine Schlüsselfunktion bei der Aktivierung des Genschalters NF-kappaB besitzt. PARP-1 erkennt geschädigte DNA in Sekundenschnelle und verbindet anschließend verschiedene Proteine, die ebenfalls eine Schlüsselrolle in dem Signalweg spielen, zu einem Komplex im Zellkern. In der Folge werden durch chemische Veränderungen dieser Proteine Signale ausgelöst, die für die NF-kappaB Aktivierung im Zellplasma essentiell sind. "Damit haben wir das Startsignal für die NF-kappaB Aktivierung identifiziert", erläutern Michael Stilmann und Dr. Hinz.
Jetzt wollen die Forscher weitere Komponenten dieser Signalübertragung und ihr Zusammenspiel erforschen. "Für die medizinische Forschung ist es von enormer Bedeutung, diese Signalwege zu verstehen. Damit verbunden ist die Hoffnung, Angriffspunkte zu erkennen, um den Überlebensfaktor NF-kappaB bei Krebserkrankungen gezielt ausschalten zu können."
Bereits jetzt laufen weltweit klinische Studien mit verschiedenen, noch nicht zugelassenen Substanzen, die gezielt PARP-1 hemmen und die in der Fachwelt große Aufmerksamkeit bekommen haben. Vor dem Hintergrund dieser Studien gewinnt die Arbeit der MDC-Forscher nach Ansicht von Experten eine besondere Bedeutung.
Prof. Scheidereit und seine Mitarbeiter arbeiten schon seit vielen Jahren über NF-kappaB. Vor einigen Jahren konnten sie zeigen, dass NF-kappaB bei Patienten mit Hodgkin-Lymphom eine wichtige Rolle für das Überleben der Tumorzellen dieses Lymphdrüsenkrebses spielt.
Originalveröffentlichung: Michael Stilmann, Michael Hinz et al.; "A nuclear Poly(ADP-ribose)-dependent signalosome confers DNA damage induced IkB kinase activation"; Molecular Cell, online