Wanderungsmechanismus entstehender Nervenzellen entschlüsselt

13.11.2009 - Deutschland

Ein entscheidender Schritt in der Entwicklung des Gehirns von Wirbeltieren ist die zielgerichtete Wanderung der Nervenzellen von ihrem Entstehungsort zum Platz ihrer späteren Funktion. Wissenschaftler des Helmholtz Zentrums München haben nun entdeckt, wie Nervenzellen mit Hilfe des zellulären Klebstoffs Cadherin-2 verknüpft und auf den richtigen Weg gebracht werden.

Reinhard Köster

Kettenwanderung von Nervenzellen im Zebrafischkleinhirn.

Cadherin-2, ein sogenanntes Transmembraneiweiß, ist ein entscheidendes Molekül für die Wanderung von Nervenzellen vom Ort ihrer Entstehung zur Position ihrer Funktion. Die Arbeitsgruppen um Dr. Reinhard Köster vom Institut für Entwicklungsgenetik und um Dr. Axel Walch vom Institut für Pathologie zeigten jetzt, dass die Nervenzellwanderung in Embryonen von Zebrafischen ohne diesen chemischen Anker in der Zellmembran nicht zielgerichtet und koordiniert, sondern mit vielen Abweichungen vom Weg verlief.

Zebrafische sind während des Embryonalstadiums durchsichtig, was die Beobachtung einzelner Zellen, ihrer Bausteine und sogar von Molekülen ermöglicht, und die Bewegung der Nervenzellen im lebenden Organismus während seiner Entwicklung abgebildet und wiedergegeben werden kann.

Die Wissenschaftler stellten fest, dass beide Zellen das Cadherin-2 als gegenseitigen Klebstoff bereitstellen müssen und dieser bei jeder Vorwärtsbewegung der Zelle entlang der Zellmembran aktiv transportiert wird. Für diese Untersuchungen entwickelte das Forscherteam ein Cadherin-2-Reportermolekül, indem Cadherin-2 mit einem Fluoreszenzfarbstoff markiert wurde. Mit dessen Hilfe konnten dynamische Zeitrafferaufnahmen gemacht und so im lebenden Gehirn die Bewegung von Molekülen in wandernden Nervenzellen verfolgt werden.

Damit identifizierte das Team einige Puzzlesteine im komplexen Wandervorgang entstehender Nervenzellen: "Wir konnten an Zebrafischen zeigen, wie sich Nervenzellen im Kleinhirn orientieren, gemeinsam ausrichten und bewegen", so Köster. Dieser gerichtete "Klebstofftransport", so das Modell, ermöglicht der Nervenzelle gemeinsam im Team mit anderen Nervenzellen "in der Spur" zu bleiben und nicht vom Weg abzukommen. Köster: "Die Einsicht in die molekularen Prozesse der Gehirnentwicklung leistet einen Beitrag, um die Entstehung von neuronalen Migrationskrankheiten wie Lissencephalien oder Schizophrenie besser zu verstehen."

Originalveröffentlichung: Rieger S, Senghaas N, Walch A, Köster RW; "Cadherin-2 Controls Directional Chain Migration of Cerebellar Granule Neurons"; PLoS Biol 2009, 7(11): e1000240

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...