Mobile Mikroskope blicken ins Gehirn
Ein winziges Laserrastermikroskop kann die Aktivität von Gehirnzellen bei frei umherlaufenden Tieren aufzeichnen
Damian Wallace / Max-Planck-Institut für biologische Kybernetik
Den Großteil unseres Lebens verbringen wir damit, uns in einer statischen Umwelt zu bewegen. Um uns zu orientieren, verarbeitet unser Gehirn die Informationen, die es von den verschiedenen Sinnesorganen geliefert bekommt. Wenn wir beispielsweise einen Laden betreten, um Obst zu kaufen, so bewegen sich weder der Laden noch das Obst, sondern wir. Wahrscheinlich berechnet unser Gehirn ständig unsere Position im Raum neu, abhängig von den Informationen, die Augen, Ohren, Haut und Gleichgewichtssinn liefern. Wie genau das funktioniert, weiß jedoch niemand, da die Wissenschaftler das Gehirn von sich bewegenden Personen bislang nicht untersuchen können.
Um dieses Problem zu lösen, haben Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik ein mobiles System entwickelt, das mehrere fluoreszierende Gehirnzellen gleichzeitig beobachtet und zudem die exakte Position des Tieres bestimmt, während dieses sich völlig frei bewegen kann. Das sehr leichte, nur etwa drei Zentimeter große Laserrastermikroskop verwendet einen hochenergetischen pulsierenden Laser und Fiberglasoptik um Zellen im Gehirn zu beobachten. Die sonst für diese Untersuchungen eingesetzten Elektroden sind nicht mehr notwendig.
Bislang konnte man die Wahrnehmung nur untersuchen, indem man einem immobilen Tier eine Reihe von Filmen oder Bildern als optische Reize präsentiert und gleichzeitig die Hirnaktivität gemessen hat. Mit der jetzt in der Fachzeitschrift PNAS vorgestellten Methode wird der Ansatz umgedreht: Man kann die Aktivität der Nervenzellen messen, während das Tier seine natürliche Umgebung erkundet. Da im Gehirn nicht einzelne Zellen, sondern vielmehr ganze Zellgruppen an bestimmten Aufgaben beteiligt sind, müssen mehrere Nervenzellen gleichzeitig erfasst werden. Auf diese Weise konnten die Wissenschaftler erstmalig untersuchen, wie das Gehirn die innere Repräsentation der äußeren Welt vollzieht, während die Augen die natürliche Umwelt wahrnehmen.
"Wir müssen dafür sorgen, dass sich ein Tier so natürlich wie möglich verhalten kann, wenn wir verstehen wollen, wie das Gehirn funktioniert, während wir uns in einer komplexen Umgebung orientieren. Die neue Technik ist ein Meilenstein auf dem Weg zu einem Verständnis von Wahrnehmung und Aufmerksamkeit", sagte Jason Kerr, Hauptautor der Studie.
Originalveröffentlichung: Juergen Sawinski et al.; "Visually evoked activity in cortical cells imaged in freely moving animals"; PNAS, Online Early Edition, November 2-6, 2009
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
alpha300 R von WITec
3D Raman Mikroskope mit unerreichter Geschwindigkeit, Sensitivität und Auflösung
Jedes chemische Detail der Probe wird sichtbar
JEOL CRYO ARM von JEOL
Kryo-TEM: Schnelle und stabile Datenerfassung für Bioproben
Effizienzsteigerung in der Strukturbiologie mit automatisiertem Probenladesystem
FLUOVIEW FV4000 von EVIDENT
Revolutionäre Bildgebung mit FLUOVIEW FV4000: Konfokales Laser-Scanning
Nutzen Sie KI-gestützte Bildverarbeitung und innovative Detektortechnologie
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.