Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Transport (Biologie)Der Transport von Stoffen, Energie und Information ist für Lebewesen die Voraussetzung, ihren komplexen Stoffwechsel und andere Lebensvorgänge zu koordinieren und aufrecht zu erhalten. Weiteres empfehlenswertes Fachwissen
Notwendigkeit eines StofftransportsAlle Organismen stehen mit ihrer Umgebung in einem regen Stoffaustausch:
Aber auch innerhalb eines Organismus sind Stoffströme zu finden:
Stoffe werden auch zwischen den Individuen einer Population (Pheromone) und zwischen den Populationen eines Ökosystems (Nahrung, Pollen) ausgetauscht. In vielen Fällen sind die Stoffströme zu einem Kreislauf verknüpft (globaler Kohlenstoffkreislauf) Zelluläre TransportsystemeDiffusion: Die freie, ungehinderte Verteilung von Molekülen und Ionen in einem Raum hängt nur von der Temperatur und dem Konzentrationsgradienten ab. Sie tritt innerhalb einer Zelle oder außerhalb der Zelle in den sogenannten Interzellularen auf. Beispiele hierfür sind die Verteilung des Kohlenstoffdioxids in den Interzellularen des Schwammgewebes eines Blattes oder die Diffusion von Transmittermolekülen durch den synaptischen Spalt. Zellwände, Zellmembranen und Organellmembranen stellen zunächst eine Diffusionsbarriere dar. Als Membrantransport wird der Austausch von Stoffen über diese Barriere hinweg bezeichnet. Permeation ist Diffusion durch diese Grenzschichten Transmembran-Transport
Zellwände sind omnipermeabel, sie lassen alle Moleküle und Ionen, außer den Makromolekülen, passieren. Biomembranen sind semipermeabel (selektiv permeabel), sie sind nur für kleine Moleküle wie Wasser, Kohlenstoffdioxid oder Sauerstoff durchlässig, die auf Grund von Unregelmäßigkeiten in der Lipid-Doppelschicht durch die Membran diffundieren. Da größere Moleküle wie Glucose oder Aminosäuren aber nur schwer die Membran passieren können, sind Transportmechanismen für eine erleichterte Aufnahme oder zum Aufbau eines Konzentrationsgradienten als Kurzzeit-Energiespeicher notwendig. Im Unterschied zur Diffusion handelt es sich beim Proteintransport um einen enzymatischen Prozess, das heißt, da nur eine begrenzte Anzahl Transportproteine zur Verfügung steht, steigt die Prozessaktivität hyperbolisch an, bis sie einen Sättigungswert erreicht hat, der nicht überschritten werden kann. Darüber hinaus sind diese Transportsysteme hoch selektiv, sie können bestimmte Moleküle aus der Umgebung erkennen und gezielt auswählen. Dabei können sie sogar Stereoisomere voneinander unterscheiden. Den Transport durch eine Membran hindurch übernehmen in der Regel integrale Proteine, welche von einer Seite der Membran zur anderen reichen. Sie bilden einen Kanal, der innen hydrophil ist und auf Grund seines Durchmessers und bestimmter Ladung für bestimmte Moleküle oder Ionen selektiv ist. Die Öffnung dieser Kanäle erfolgt meist erst auf Grund eines Signals (Hormone, Transmitter, Aktionspotenzial, mechanische Verformung), so dass der Transmembran-Transport nach Bedarf gesteuert werden kann. Passiver TransportBeim passiven Transport erfolgt die Wanderung von Molekülen oder Ionen auf Grund eines Konzentrationsgefälles, bei Ionen kann auch das Membranpotenzial noch eine Rolle spielen. Für den raschen Wassertransport ins innere der Zelle gibt es in der Zellmembran Aquaporine.
Cotransport: Manche Carrier tragen Bindungsstellen für verschiedene Substrate. Erst wenn sie alle besetzt sind, erfolgt der Transport. Symport ist der Transport aller Substrate in die selbe Richtung, beim Antiport werden die Substrate in die entgegengesetzte Richtung transportiert. (Handelt es sich nur um ein Substrat, spricht man auch von Uniport.)
Aktiver Transport
Der Import von Glucose erfolgt durch das Transmembran-Enzym II C, welches Glucose beim Durchtritt phosphoryliert und damit die Konzentration der freien Glucose im inneren der Zelle niedrig hält. Der Maltose-Import durch die Maltose-Permease ist von ATP-abhängig. Vesikel-Systeme (Membranverlagernder Transport)Makromoleküle und größere Nahrungspartikel können nicht mehr mittels Transportproteine durch die Membran hindurch treten. Sie werden mit Hilfe eines Vesikelsystems (lat. vesica, die Blase) transportiert. Im Inneren der Zelle werden diese Vesikel im allgemeinen als Endosomen bezeichnete. Vesikel bilden sich dadurch, dass sich ein Teil der Membran ein- oder ausstülpt und sich dann als geschlossenes Hohlkügelchen abschnürt. Dabei werden Stoffe und Partikel des Milieus mit eingeschlossen. Umgekehrt kann ein Vesikel wieder mit der Membran verschmelzen und seinen Inhalt ausschütten.
Bei der Endozytose (gr. kytos, die Zelle; gr. endon, innen) werden Stoffe oder Partikel in die Zelle importiert. Handelt es sich dabei um Nahrungspartikel, spricht man von Phagozytose (gr. phagos, Fresser). Wird Wasser mit darin gelösten Stoffen aufgenommen, wird das als Pinozytose (gr. pino, trinken, saugen) bezeichnet. Bei der rezeptorvermittelten Endozytose werden nur bestimmte Moleküle zur Aufnahme ausgewählt. Beispiel: Cholesterin-Aufnahme. Bestimmte Stellen der Zellmembran sind außen mit Cholesterin-Rezeptoren und innen mit Eiweißen ausgekleidet (coated pits, Stachelsaum-Gruben). Sind alle Rezeptoren besetzt, stülpt sich die Membran ein, es bilden sich sogenannte Stachelsaum-Vesikel (coated vesicles). Phagozyten sind spezialisierte Fresszellen des Immunsystems, die durch Phagozytose Zelltrümmer, Krankheitserreger und Fremdeiweiße, ja sogar Asbestfasern aufnehmen (siehe Makrophage, Mikrophage). Bei der Exozytose (gr. exo, außen, nach außen, außerhalb) werden Sekrete oder nicht verwertbare Stoffe ausgeschieden. Beispiele:
ZytoskelettDas Zytoskelett besteht aus Mikrotubuli, Actin-Filamenten und intermediären Filamenten. Neben der Aufrechterhaltung und Änderung der Gestalt einer Zelle dient es vor allem innerhalb der Zelle dem Transport von Chromosomen bei der Zellteilung und dem Transport von Zellorganellen, Vesikeln und Makromolekülen. OrganismusZellverbindungen
Um den Austausch von Stoffen zwischen den Zellen eines Gewebes zu ermöglichen, wird die Lücke (engl. gap) zwischen den Zellen durch Poren von 1,2 bis 2 nm Durchmesser, überbrückt (engl. junction Verbindung). Diese Poren werden von 6 radial angeordneten Proteinen gebildet, sie befinden sich in den Membranen beider Zellen und stehen sich genau gegenüber, so dass ein Kanal durch beide Zellmembranen entsteht. Sie sind omnipermeabel und lassen sowohl Ionen als auch ungeladene Moleküle entsprechend dem Konzentrationsgefälle passieren. Sie können aber auch selektiv permeabel sein und im Herz- und Nervengewebe als elektrische Synapsen die Weiterleitung von Aktionspotenzial ermöglichen.
Geißeln und WimpernMit Hilfe von Geißeln und Wimpern (Cilien) können Strömungen erzeugt werden, mit deren Hilfe Nahrungspartikelchen an den Ort der Phagoscytose transportiert werden. Beispiele:
Ferntransport – OrgansystemeJe größer ein vielzelliger Organismus ist, um so schlechter werden im Inneren liegende Zellen allein durch Diffusion und zelluläre Transportmechanismen versorgt. Eigene Transporteinrichtungen bewerkstelligen eine rasche und gleichmäßige Verteilung von Stoffen und Wärme. Je größer der Organismus ist, um so stärker verzweigt sind diese Transportsysteme. Der Transport muss unabhängig von der Schwerkraft in jeder Körperlage möglich sein. TiereVerdauungstraktMit zunehmender Größe der Nahrungsteilchen ist es notwendig, diese mechanisch zu zerkleinern und chemisch bei den größeren Mehrzellern der Verdauungstrakt. Der Weitertransport der Nahrung erfolgt über Längs- und Ringmuskeln durch Peristaltik. Die durch Verdauung erschlossenen Nährstoffbausteine und andere kleinere Moleküle diffundieren durch die Darmwand oder werden durch eigene Transportproteine durch die Zellmembranen in die Körperhöhle geschleust. BlutkreislaufBlut und Lymphe transportieren zahlreicher Stoffe (Nährstoffe, Abwehrstoffe, Abfallstoffe, Hormone) und Wärme. Als Transportmittel dient Wasser, in dem die Stoffe entweder gelöst oder an Trägermoleküle gebunden sind. Das Blut wird durch ein spezielles Organ, das Herz, durch den Körper gepumpt. Bei den Wirbeltieren unterstützen Gefäßmuskeln und angrenzende Skelettmuskeln diese Pumptätigkeit. Insekten und Weichtiere besitzen einen offenen Blutkreislauf, Wirbeltiere und Ringelwürmer einen geschlossenen. Dabei wird das Blut in einem geschlossenen Gefäßsystem durch den Körper geführt. Bei den Organen verzweigen sich die Blutgefäße zu engen, dünnwandigen Kapillaren. Hier findet der Stoffaustausch mit dem angrenzenden Gewebe durch Diffusion statt. GastransportDer Gasaustausch zwischen Umwelt und Organismus findet entweder über die Haut (Amphibien und im Wasser lebende Würmer), über Kiemen (Fische, Amphibien-Larven, Wasserschnecken, Krebse) oder über Lungen (an Land lebende Tiere) statt. Um die Kiemen immer mit frischem Wasser zu versorgen, haben sich verschiedene Mechanismen entwickelt: Fische saugen über das Maul frisches Wasser an und stoßen es über die Kiemen wieder aus, Krebse erzeugen mit ihren Hinterleibsbeinen einen beständigen Wasserstrom, die sessilen Röhrenwürmer bewegen ihre Kiemen durchs Wasser. Um Lungen mit Frischluft zu versorgen, wird durch Erweiterung des Brustraumes mittels Zwerchfell und Zwischenrippenmuskulatur ein Unterdruck erzeugt, der die Luft einsaugt. Durch Verengung des Brustraumes wird die mit Kohlenstoffdioxid angereicherte Luft wieder ausgepresst. Transport der Atemgase im Körper:
Weitere TransportsystemeWeitere Transportsysteme sind die Nierenkanälchen, Harnleiter, Samenleiter, Gallengänge, Milchgänge der Milchdrüsen und Ausführgänge der Bauchspeicheldrüse, der Talgdrüsen und der Schweißdrüsen der Haut. NervensystemDas Nervensystem der Tiere stellt ein Organsystem zur Aufnahme, Weiterleitung, Verarbeitung und Speicherung von Information dar. Grundlage ist der Transport von Ionen durch die Membran der Nervenzellen und von Transmitter-Stoffen durch den synaptischen Spalt. Auch Pflanzenzellen sind befähigt, Aktionspotenziale auszubilden. Ihre Entstehung dauert allerdings länger und wird nicht über ein eigenes Nervensystem weitergeleitet. PflanzenDer Ferntransport von Wasser und darin gelösten Nährsalzen findet in den Tracheen und Tracheiden des Xylems statt, Assimilate werden in den Siebröhren des Phloems transportiert.
Die Assimilate (Mono- und Disaccharide) werden in den Siebröhren nach unten transportiert. Ihr Zytoplasma bildet einen zusammenhängenden Symplasten, da ihre Querwände (die Siebplatten) zahlreiche Poren aufweisen, die von Plasmodesmen durchzogen sind. Der Transport erfolgt entlang eines starken osmotischen Gefälles. Die Siebröhrenzellen erhalten die Assimilate durch aktiven, ATP-verbrauchenden Transmembran-Transport von den sie umgebenden Geleitzellen (Transferzellen). Ihr Plasmalemma ist zur Oberflächenvergrößerung stark gefaltet (ähnlich den Darmzotten), so dass viele Transportproteine Platz haben. Am Verbrauchs- oder Speicherort werden die Assimilate wieder aktiv aus den Siebröhren gepumpt.
Der Gastransport erfolgt bei Pflanzen allein durch Diffusion über Spaltöffnungen oder Lentizellen und das die ganze Pflanze durchziehende Interzellular-System. Besonders ausgeprägt sind diese Hohlräume im Schwammgewebe des Blattes. Bei Sumpf- und Wasserpflanzen wird der Gasaustausch besonders in den untergetauchten Pflanzenteile durch Aerenchyme (Durchlüftungsgewebe, Sternparenchym bei Binsen) und Lacunen gefördert. Bei Sumpfpflanzen (z.B. Mangroven) verbessern Atemwurzeln den Gasaustausch mit der Luft. ÖkosystemeEnergieflussDer Aufbau und die Aufrechterhaltung von Strukturen macht bei den Lebewesen eine beständige Aufnahme von Energie notwendig. Über die Nahrungsketten wird diese Energie in Form von energiereichen Nährstoffen weitergegeben. Diese Energie stammt letztlich aus der Sonnenstrahlung, die von phototrophen Organismen genutzt und als chemische Energie in Nährstoffen gespeichert wird. Bei jedem Stoffwechselprozess geht Energie in Form von Wärmebewegung verloren. StoffflussInnerhalb eines Ökosystems findet ein ständiger Austausch von Nährstoffen, Mineralstoffen und Gasen (O2, CO2) statt, die in einem Kreislauf geführt werden. Beispiele:
Legende: P = Produzenten; K = Konsumenten; D = Destruenten CO2 = Kohlenstoffdioxid; O2 = Sauerstoff; org. = organische Stoffe; CH4 = Methan N2 = Stickstoff; NH4+ = Ammonium-Ion, NO2− = Nitrit-Anion, NO3− = Nitrat-Anion SymbiosenIn Symbiosen werde Stoffe zwischen den Partnern besonders effektiv ausgetauscht. Man unterscheidet Ektosymbiosen und Endosymbiosen. Bei diesen lebt der eine Partner im Inneren des anderen. Beispiele hierfür sind die Stoffwechselsymbiosen der Korallen und Radiolarien mit Grünalgen oder Cyanobakterien: Der photosynthetisch aktive Partner erhält vom Tier Kohlenstoffdioxid aus der Zellatmung. Durch die Photosynthese entsteht Sauerstoff, der dem Tier für die Dissimilation zur Verfügung steht. Zusätzlich assimilieren die autotrophen Partner Stickstoff und geben die stickstoffhaltigen, organischen Verbindungen an das Tier weiter. Grünalgen nutzen Nitrat als Stickstoffquelle, Cyanobakterien den elementaren Stickstoff. Der Stoffkreislauf kann auch gestört sein
Geophysikalischer TransportMaterialien und Stoffe, die den Lebewesen als Lebensgrundlage dienen können, werden durch geophysikalische Vorgänge einem Ökosystem zugeführt oder entnommen. Zirkulation im SeeEin stehendes Gewässer erwärmt sich durch die Sonneneinstrahlung von oben. Ist es tief genug wie bei einem See, entsteht eine ausgeprägte Temperaturschichtung. Das warme Oberflächenwasser (Epilimnion) schwimmt auf dem kalten Tiefenwasser (Hypolimnion). Die beiden Wasserkörper sind durch die Sprungschicht (Metalimnion mit Thermokline) voneinander getrennt. Ist die Schichtung stabil, kann durch den Wind nur das Epilimnion durchmischt und mit Sauerstoff für die Tiere oder Kohlenstoffdioxid für photoautotrophe Organismen aus der Atmosphäre versorgt werden. Totes organisches Material sinkt zu Boden und wird dort durch aerobe Destruenten remineralisiert. Da aber kein Austausch zwischen Hypo- und Epilimnion stattfindet, reichern sich die Nährsalze unten an, während die obere Schicht an Nährsalzen verarmt, wodurch dort der Zuwachs an Primärproduzenten eingeschränkt wird. Kühlt das Oberflächenwasser auf die Temperatur des Tiefenwassers ab, bricht die Sprungschicht zusammen, der gesamte Wasserkörper kann durchmischt werden. Die Nährsalze werden durch Konvektion in die oberen Wasserschichten transportiert und stehen damit wieder den photoautotrophen Organismen zur Verfügung, das an Sauerstoff reiche Oberflächenwasser wird nach unten transportiert, somit steht wieder Sauerstoff den Destruenten und Tieren des Tiefenwassers zur Verfügung. Zirkulation im MeerÄhnlich wie bei einem See bildet sich auch in den Meeren eine Sprungschicht aus, die nur eine Durchmischung des Oberflächenwassers erlaubt. Beständige Winde, Corioliskraft, Gezeiten sowie Temperatur- und Salzgehaltsgefälle erzeugen ein lokales und globales, horizontales und vertikales, über die Sprungschicht hinausgreifendes, Strömungssystem. Der Golfstrom ist Bestandteil dieses Systems. Er transportiert an der Oberfläche warmes Wasser nach Norden und sorgt damit in diesen Breiten für ein gemäßigtes Klima. Die in der Sargasso-See geschlüpften Aal-Larven werden durch den Golfstrom nach Nord- und Westeuropa transportiert, wo sie flussaufwärts zu ihren Laichgebieten schwimmen. Durch die Verdunstung erhöht sich der Salzgehalt des Golfstroms und im Norden wird das Wasser abgekühlt. Dadurch erhöht sich die Dichte des Wassers und es sinkt östlich von Grönland nach unten ab. Als kaltes, salzreiches Tiefenwasser strömt es wieder nach Süden und reichert sich dabei mit Nährsalzen an. In den Auftriebszonen des Peru-, Benguela- und Kanarenstroms sorgen diese Nährsalze für eine hohe Biomasseproduktion. Das verstärkte Abschmelzen der Eiskappen des Nordpols und Grönlands würden bei einer Klimaerwärmung zu einer Erniedrigung des Salzgehaltes und damit zum Abreißen des Golfstromes führen, dies würde zu einer eiszeitartigen Abkühlung in Europa führen. Verfrachtungen durch FlüsseIm Gegensatz zu einem See stellt ein Fluss ein offenes Ökosystem dar: Durch die Erosion im Oberlauf reichert sich das Wasser mit Nährsalzen (Carbonate, Sulfate, Eisenionen) an, die flussabwärts transportiert werden und von den Primärproduzenten und Konsumenten genutzt werden. Im Mittel- und Unterlauf kommt es einerseits am Prallhang zu Abtragungen im Uferbereich, dadurch gelangt organisches Material (Detritus) in den Fluss, das von Destruenten remineralisiert wird und damit den Produzenten zur Verfügung steht. Andererseits kommt es zu Aufschüttungen von Sand- und Schlickbänken, die besondere Kleinbiotope darstellen. Deltagebiete können durch Aufschüttungen einen Zugewinn an Land bewirken (Euphrat und Tigris, Mississippi River). Totes organisches Material von den Lebewesen des Flusses oder des Uferbereichs gelangt in großen Mengen in den Unterlauf, so dass dieser Bereich ein nährstoffreiches (eutrophes) Ökosystem darstellt. Regelmäßige (Nil) oder gelegentliche Überschwemmungen (Oderbruch) versorgen das Überschwemmungsgebiet mit anorganischen und organischen Nährstoffen und schaffen damit die Grundlage für eine erhöhte Biomasseproduktion an Land. WindverfrachtungenÄhnlich wie bei den Flüssen kommt es auch durch den Wind zur großräumigen Verfrachtung von organischem und anorganischem Material. Dadurch kann Humus in einem Gebiet verloren gehen und in anderen Gebieten wieder angereichert werden. (Siehe auch die Entstehung des Lössbodens). Lebewesen nutzen den Wind als Transportmittel: Windbestäuber (Fichte, Tanne, Kiefer, Gräser) lassen ihren Pollen transportieren. Pilze nutzen den Wind zur Verbreitung ihrer Sporen. Viel Blütenpflanzen lassen ihren Samen als Flugfrüchte durch den Wind verbreiten (Löwenzahn, Weide, Ahorn). Jungspinnen lassen sich auf einem Faden sitzend durch den Wind in andere Regionen transportieren. Die Verfrachtung von flugfähigen Tieren kann ebenfalls zur Verbreitung ihrer Art führen (Besiedlung der pazifischen Inselwelt durch Vögel und Insekten, Wanderrichtung der Wanderheuschrecke). Allerdings können diese Tiere auch aufs Meer hinaus geweht werden, was zu ihrem Tod führen kann. Deshalb findet man auf kleinen Inseln häufig flugunfähige Insekten oder Vögel (Dronte). Tiere als TransportsystemeAuch Tiere werden von anderen Lebewesen als Transportsysteme genutzt:
Literatur
Siehe auchKategorien: Zellbiologie | Physiologie |
|||||||||||||||||||||||||||||||
Dieser Artikel basiert auf dem Artikel Transport_(Biologie) aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |