Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
RöntgenstrahlerDer Röntgenstrahler ist ein technischer Apparat zum Erzeugen von Röntgenstrahlen. Er besteht aus einer Röntgenröhre und einem Schutzgehäuse, deren Aufbau in der DIN 6814 Blatt 6 festgelegt sind. Weiteres empfehlenswertes Fachwissen
RöntgenröhreAufbauEine Röntgenröhre besteht in ihrer einfachsten Form aus einer Kathode und einer Anode (früher auch als Antikathode bezeichnet), die in einem Vakuum innerhalb eines abgedichteten Glaskörpers sitzen. Bei Hochleistungsröhren wie sie in der Computertomographie (CT) und der Angiographie verwendet werden, besteht der Vakuumbehälter aus Metall, welches wesentlich größeren Wärmeeinflüssen standhält. Im Laufe der Zeit wurden auch bei Röntgenröhren technische Verbesserungen vorgenommen, die allerdings am eigentlichen Prinzip der Erzeugung von Röntgenstrahlen nichts ändern. FunktionVon der Kathode werden Elektronen emittiert (ausgesandt), durch eine Hochspannung zur Anode beschleunigt und dringen in das Anodenmaterial ein. Dabei werden sie abgebremst und erzeugen Röntgenstrahlen (Bremsstrahlung und sogenannte charakteristische Röntgenstrahlung). Diskrete bzw. charakteristische Röntgenstrahlung Diese diskrete bzw. charakteristische Röntgenstrahlung mit den jeweiligen Quantenenergien und somit Wellenlängen wird jedoch mit Ausnahme der Mammographie und der Kristallanalyse nicht oder nur zum kleinen Teil für die Bilderzeugung bei einer Röntgendurchleuchtung genutzt. Es sei erwähnt, dass die Elektronen der inneren Schalen nicht nur durch Stöße von außen, wie z. B. in der Röntgenröhre, sondern auch durch den Prozess der inneren Konversion aus dem Atom herausgeschlagen werden können. Röntgenbremsstrahlung KathodenartenKathoden werden nach der Art der Elektronenerzeugung charakterisiert. Thermische EmissionDie Kathode besteht aus einem Filament (Glühwendel), welches meist aus einem Wolframdraht besteht. Diese Glühkathode wird durch Stromdurchfluss auf ca. 2000 °C aufgeheizt, so dass thermische Emission von Elektronen aus dem Metall eintritt. Die Elektronen bilden eine negativ geladene Elektronenwolke, die dem Austritt weiterer Elektronen entgegenwirkt. Erst über das Anlegen einer positiven Spannung an die Anode werden die Elektronen auf diese beschleunigt. Besteht die Röhre nur aus Kathode und Anode, spricht man von einer Diode. Der Anodenstrom wird durch das Feld und ab einem Sättigungswert durch den Heizstrom des Filaments bestimmt. FeldemissionDas Filament wird hier nur auf moderate Temperaturen je nach Material erwärmt. Durch das Aufheizen allein tritt noch keine Emission auf. Jedoch befinden sich dadurch viele Elektronen auf einem erhöhten Energieniveau oberhalb der Fermilevel. Legt man ein sogenanntes Extraktionsgitter über das Filament, welches gegenüber diesem positiv ist, erzeugt man im Raum zwischen beiden sehr hohe Feldstärken von mehreren Volt pro Mikrometer. Dies führt dazu, dass Elektronen aus dem Filament gezogen werden. Das Potenzial des sogenannten Vakuumlevels - des Potenzials, welches ein Elektron erreichen muss, um wirklich frei vom ursprünglichen Festkörper zu sein - wird durch das starke äußere Feld mit zunehmenden Abstand von der Oberfläche des Metalls/Filaments abgesenkt. Die Elektronen können nun dieses Potenzial zu Vakuumlevel hin durchtunneln und verlassen den Festkörper. Hinter dem Extraktionsgitter folgt wieder das negativ geladene Regelungsgitter - der Wehneltzylinder. AnodenartenFest- oder StehanodeBei einer feststehende Anode treffen die Elektronen auf eine typischerweise 1 x 10 mm² große Fläche. Im Bereich dieses Brennpunktes kann die Abnutzung des Anodenmaterials sehr hoch werden. Man verwendet z. B. in Kupfer eingelassene Wolfram-Platten. Wolfram besitzt eine besonders hohe Konversionsrate von elektrischer Energie in Röntgenstrahlungsenergie bei gleichzeitig hohem Schmelzpunkt. DrehanodeDie Drehanode besteht üblicherweise aus einem Verbundteller aus einer Wolfram-Deckschicht und einer darunter liegenden, hoch wärmefesten Molybdän-Legierung, der über eine Welle an einem Rotor (Kurzschlussläufer) befestigt ist. Außerhalb der Röntgenröhre befindet sich das Spulenpaket des Stators zum Antrieb des Rotors nach dem Prinzip eines Asynchronmotors. Die Elektronen treffen auf den Rand des Tellers auf. Durch die Drehung des Tellers wird die Wärme aus dem Brennfleck auf dem Tellerrand verteilt. Dies führt zu einer längeren Lebenszeit der Anode und ermöglicht eine größere Strahlintensität, als sie bei feststehender Anode bis zum Aufschmelzen des Anodenmaterials erreichbar wäre. Die Umdrehungszahl solcher Anoden ist verschieden: während Anodenteller mit ca. 8 bis 12 cm Durchmesser mit 8000 bis 9000 Umdrehungen/Minute rotieren und meist nicht im Dauerbetrieb (die Lebensdauer von Kugellagern beträgt im Vakuum nur wenige hundert Stunden; der Teller wird daher beschleunigt und nach der Aufnahme wieder abgebremst), drehen Hochleistungsanoden mit ca. 20 cm Durchmesser bei 3500 bis 6000 Umdrehungen/Minute im Dauerbetrieb und vorzugsweise auf verschleißfreien hydrodynamischen Gleitlagern montiert. Auf Grund der starken Wärmeentwicklung (99 % der aufgewendeten Energie werden zu Wärme) muss der Anodenteller gekühlt werden. Dies geschieht bei Röhren mit Kugellagern nur durch Wärmeabstrahlung und bei Röhren mit Flüssigmetall-Gleitlagern zusätzlich durch direkte Wärmeableitung ins Innere des Lagers und dann in das Kühlwasser oder Kühlöl hinein. Ein weiterer Vorteil von hydrodynamischen Gleitlagern ist der verschleißfreie, fast geräuschlose Lauf, sodass auch aus diesem Grund die Beschleunigung und Abbremsung der Anode entfallen kann. SchutzgehäuseDas Schutzgehäuse eines Röntgenstrahlers hat mehrere Funktionen:
Anwendungen
spezielle Verfahren und BauformenHochleistungsröntgenröhren, Weichstrahlröntgen, Röntgenlinsen, Phasenkontraströntgen, Mikrofokusröntgenröhren |
|
Dieser Artikel basiert auf dem Artikel Röntgenstrahler aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |