Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
NeuroinformatikDie Neuroinformatik ist ein Teilgebiet der Informatik, das sich mit der Informationsverarbeitung in neuronalen Systemen befasst um diese in technischen Systemen anzuwenden. Sie ist zu unterscheiden von der Computational Neuroscience welche als Teilgebiet der Neurobiologie sich mit dem Verständnis biologischer neuronaler Systeme mittels mathematischer Modelle beschäftigt. Bei der Neuroinformatik handelt es sich um ein stark interdisziplinäres Forschungsgebiet im Schnittbereich zwischen KI-Forschung und Kognitionswissenschaft. Im Gegensatz zu der Künstlichen Intelligenz, deren Ziel es ist, Maschinen zu entwickeln, die sich im Ergebnis "intelligent" verhalten, geht es der Neuroinformatik mehr um die innere Arbeitsweise des Gehirns. Dessen Arbeitsweise wird untersucht, indem man seine Grundbausteine, Neuronen und Synapsen und deren Verschaltung simuliert. Weiteres empfehlenswertes Fachwissen
Teilgebiete der NeuroinformatikNeuronale Methoden werden vor allem dann eingesetzt, wenn es darum geht aus schlechten oder verrauschten Daten Informationen zu gewinnen, aber auch Algorithmen die sich neuen Situationen anpassen, also lernen, sind typisch für die Neuroinformatik, dabei unterscheidet man grundsätzlich überwachtes Lernen und unüberwachtes Lernen, ein Kompromiss zwischen beiden Techniken ist das Reinforcement-Lernen. Assoziativspeicher sind eine besondere Anwendung neuronaler Methoden, und damit oft Forschungsgegenstand der Neuroinformatik. Viele Anwendungen für künstliche neuronale Netze finden sich auch in der Mustererkennung und vor allem im Bildverstehen. UniversitätenDie Neuroinformatik ist ein relativ junger und kleiner Teil der Informatik, dennoch finden sich an vielen Universitäten Institute, Abteilungen oder Arbeitsgruppen für Neuroinformatik. Die folgende Liste soll diese Universitäten auflisten, erhebt aber bislang keinen Anspruch auf Vollständigkeit: Deutschland
Schweiz
Österreich
Biologische Grundlagen neuronaler NetzeNeurone (zu deutsch auch Nervenzellen) finden sich überall im Körper, besonders gehäuft treten sie jedoch im Gehirn auf; fast alle höheren Tiere verfügen über ein Gehirn. Auf frischen Schnitten durch das Gehirn findet man eine rötlichbraune Schicht, die sogenannte graue Substanz und eine weißliche Schicht, die weiße Substanz. Jedes Neuron besteht aus drei Teilen:
Die Dendriten und Axone sind zwei verschiedenen Arten von Fortsätzen, die vom Zellkern abgehen. Zumeist entspringen an jedem Zellkern eine Vielzahl von Dendriten, die sich zu einem Baum verzweigen, aber nur ein einzelnes Axon. Die Dendriten und Zellkerne liegen dabei ausschließlich in der grauen Substanz, in der es auch einige wenige Axone gibt, jedoch nur solche, die nicht von einer Myelinschicht überzogen sind. In der weißen Substanz verlaufen nur myelinisierte Axone. Da Myelinscheiden aus Zellmembranen bestehen, die viele Lipide enthalten, ist der Fettanteil relativ hoch und die Schicht erscheint weißlich. Zwei Neurone sind über Synaptische Kopplungen miteinander verbunden. Synapsen sind die Orte, an denen Erregung von einem Neuron in ein anderes übergeht. Die elektrische Erregung wird dabei entweder chemisch, mittels eines Neurotransmitters oder elektrisch übertragen. Der Abstand, der bei der chemischen Synapse überbrückt wird, der Synaptische Spalt, ist 20-30 nm breit. Man unterscheidet hemmende inhibitorische Synapsen und erregende exzitatorische Synapsen (excitatorische Synapsen). In der Nervenzelle werden die über die Synapsen herangetragenden Erregungen verrechnet. Wird dabei eine bestimmte Reizschwelle überschritten, so wird im Neuron ein Aktionspotenzial ausgelöst, das sich über der Membran der Nervenzelle aufbaut. Modellierung neuronaler NetzeEs gibt viele verschiedene Modelle, um Neuronale Netze zu modellieren.
Es gibt aber auch viele andere Arten Künstlicher neuronaler Netze: Netze mit Lehrer
Netze mit Konkurrenz
Netze mit Rückkopplung
Literatur
|
|
Dieser Artikel basiert auf dem Artikel Neuroinformatik aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |