Meine Merkliste
my.bionity.com  
Login  

Muskulatur




 

Als Muskulatur bezeichnet man ein Organsystem, welches die Gesamtheit der Muskeln eines Lebewesens umfasst. Wird der Begriff im Zusammenhang mit anderen Körperteilen benutzt, wie z. B. bei den Bezeichnungen Bauchmuskulatur oder Rückenmuskulatur, so bezieht sich die Aussage auf die Muskelgruppen des jeweiligen Körperabschnitts und ihre Wechselwirkung.

Ein einzelner Muskel (lat. musculus = „Mäuschen“) ist ein kontraktiles Organ, welches durch die Abfolge von Kontraktion und Erschlaffen innere und äußere Strukturen des Organismus bewegen kann. Diese Bewegung ist sowohl die Grundlage der aktiven Fortbewegung des Individuums und der Gestaltveränderung des Körpers als auch vieler innerer Körperfunktionen.

Eine grundlegende Differenzierung der Muskulatur bei Säugetieren einschließlich des Menschen erfolgt über ihre histologische Struktur und den Mechanismus der Kontraktion. Demnach unterscheidet man glatte Muskulatur und quergestreifte Muskulatur. Letztere lässt sich weiter in die Herzmuskulatur und die Skelettmuskulatur unterteilen. Weitere Unterscheidungsmöglichkeiten ergeben sich durch die Form, die Fasertypen und funktionelle Aspekte (s. u.).

Das einem Muskel zugrundeliegende Gewebe ist das Muskelgewebe, welches aus charakteristischen Muskelzellen besteht. Beim Skelettmuskel werden die Muskelzellen als Muskelfasern bezeichnet.

Inhaltsverzeichnis

Vergleich der Muskeltypen

  Glatte Muskulatur Herzmuskulatur Skelettmuskulatur
Aufbau      
  motorische Endplatte keine keine ja
  Fasern fusiform, kurz (<0,4mm) verzweigt zylindrisch, lang (<15cm)
  Mitochondrien wenige viele wenige bis viele (je nach Muskeltyp)
  Zellkerne/Faser 1 1 viele
  Sarkomere keine ja, max. Länge 2,6µm ja, max. Länge 3,7µm
  Synzytium nein (Einzelzellen) nein (aber funktionelles Synzytium) ja
  sarkoplasm. Retikulum   wenig entwickelt mäßig entwickelt stark entwickelt
ATPase wenig mittel viel
Funktion      
  Schrittmacher spontan aktiv (langsam) ja(schnell) nein(benötigt Nervenreiz)
  Reizantwort abgestuft "Alles-oder-Nichts" "Alles-oder-Nichts"
  tetanisierbar ja nein ja
  Arbeitsbereich Kraft/Längen-Kurve ist variabel im Anstieg der Kraft/Längen-Kurve am Maximum der Kraft/Längen-Kurve
Reizantwort          

Histologie

Die Bezeichnung der zytologischen Strukturen der Muskelzellen unterliegt einer für die Muskulatur spezifischen Nomenklatur und unterscheidet sich deshalb teilweise von der anderer Zellen:

Muskelzelle andere Zellen des Organismus
Sarkoplasma Zytoplasma
sarkoplasmatisches Retikulum glattes endoplasmatisches Retikulum
Sarkosom Mitochondrium
Sarkolemm(a) Zellmembran


  • Skelettmuskeln sind die willkürlich steuerbaren Teile der Muskulatur und gewährleisten die Beweglichkeit des Tieres. Sie heißen auch gestreifte - bzw. quergestreifte Muskeln, da ihre Myofibrillen im Gegensatz zu den glatten Muskeln ganz regelmäßig angeordnet sind und dadurch ein erkennbares Ringmuster aus roten Myosinfilamenten und weißen Aktinfilamenten erzeugen. Sämtliche Skelettmuskeln werden der somatischen Muskulatur zugeordnet.
  • Der Herzmuskel arbeitet ständig, kann nicht krampfen, hat ein eigenes Erregungsleitungssystem, kann spontan depolarisieren, enthält die kardiale Isoform des Troponin I und T. Er weist die Querstreifung von Skelettmuskeln auf, ist allerdings unwillkürlich gesteuert und stellt somit eine eigene Muskelart dar.
  • Die glatte Muskulatur ist nicht der bewussten Kontrolle unterworfen, sondern vom vegetativen Nervensystem innerviert und gesteuert. Dazu zählt zum Beispiel die Muskulatur des Darms. Sämtliche glatte Muskeln werden der viszeralen Muskulatur zugeordnet.

Die gestreifte Muskulatur stammt von den Myotomen der Somiten der Leibeswand ab, die glatte aus dem Mesoderm der Splanchnopleura, sodass diese auch als Eingeweidemuskulatur bezeichnet wird. Im Bereich des Kopfdarms wird die viszerale Muskulatur von den Hirnnerven innerviert und ist quergestreift, während die restliche Eingeweidemuskulatur aus glatten Muskelfasern besteht.

Andere Kategorisierungsmöglichkeiten

Ein Muskel lässt sich auf verschiedene Weise einordnen, wobei diese Einteilung nicht direkt und eindeutig ist. Oft überschneiden sich die Eigenschaften. Je nach Blickwinkel werden sie durch ihre Zellstruktur, Form oder Funktion unterschieden. Weiterhin lassen sich Typen von Muskelfasern unterscheiden, die in einem Muskel vermischt vorkommen.

Anatomisch

Beispiele: Ziliarmuskel zur Verformung der Linse des Auges, Schließmuskeln um After, Mund, Auge, Blasenausgang und Magenausgang (Pylorus).
  • Hohlmuskel
Beispiele: Speiseröhre, Magen, Darm, Herz
  • spindelförmige Muskeln
Beispiele: Musculus soleus
  • federförmige Muskeln
  • mehrbäuchige Muskeln
Beispiel: M. rectus abdominis.
  • mehrköpfig
Beispiele: M. biceps brachii, M. triceps brachii und M. quadriceps femoris.

Unterteilt wird auch in:

„Zytologisch“ (s. o.) und „Funktional“ (s. u.)

Einteilung der Muskelfasertypen

nach Enzymaktivität

  • Typ I Fasern: SO (eng. slow oxidative fibers „langsame oxidative Fasern“)
  • Typ II Fasern:
  • Typ II A Fasern: FOG (eng. fast oxydativ glycolytic fibers „schnelle oxidative/glykolytische Fasern“)
  • Typ II X Fasern: FG (eng. fast glycolytic fibers „schnelle glykolytische Fasern“) Man unterscheidet je nach Tierart verschiedene Typen (B oder C).

nach Kontraktionseigenschaft

  • ST-Faser (eng. slow twitch fibers „langsam zuckende Fasern“) sind sehr ausdauernd, entwickeln allerdings nicht hohe Kräfte. (entspricht SO)
  • Intermediärtyp (entspricht FOG)
  • FT-Faser (eng. fast twitch fibers „schnell zuckende Fasern“) dagegen können hohe Kräfte entwickeln, ermüden aber auch viel schneller. (entspricht FG)

nach Farbe

  • rote Muskeln (entspricht SO)
  • weiße Muskeln (entspricht FG)

Das Verhältnis der Zusammensetzung der verschiedenen Typen ist weitestgehend genetisch bestimmt und ist nur durch ein gezieltes Ausdauer- beziehungsweise Krafttraining begrenzt veränderbar.

Muskelkontraktion

Beschreibung

Die Kontraktion ist ein mechanischer Vorgang, der durch einen Nervenimpuls ausgelöst wird. Dabei schieben sich Eiweißmoleküle (Aktin und Myosin) ineinander. Dieses wird durch schnell aufeinanderfolgende Konformationsänderungen der chemischen Struktur möglich, wodurch die Fortsätze der Myosinfilamente – vergleichbar mit schnellen Ruderbewegungen – die Myosinfilamente in die Aktinfilamente hineinziehen (mehr Details: siehe Muskelkontraktion). Hört der Nerv auf, den Muskel mit Impulsen zu versorgen, erschlafft der Muskel, man spricht dann von Muskelrelaxation.

Kontraktionsarten

Je nach Kraft- (Spannungs-) bzw. Längenänderung des Muskels lassen sich mehrere Arten der Kontraktion unterscheiden:

  • isotonisch ("gleichgespannt"): Der Muskel verkürzt sich ohne Kraftänderung.
  • isometrisch ("gleichen Maßes"): Die Kraft erhöht sich bei gleicher Länge des Muskels (haltend-statisch). Im physikalischen Sinne wird keine Arbeit geleistet, da der zurückgelegte Weg gleich null ist.
  • auxotonisch ("verschiedengespannt"): Sowohl Kraft als auch Länge ändern sich. Das ist der häufigste Kontraktionstyp.

Aus diesen elementaren Arten der Kontraktion lassen sich komplexere Kontraktionsformen zusammensetzen. Sie werden im alltäglichen Leben am häufigsten benutzt. Das sind z. B.

  • die Unterstützungszuckung: erst isometrische, dann isotonische Kontraktion. Beispiel: Anheben eines Gewichtes vom Boden und anschließendes Anwinkeln des Unterarms.
  • die Anschlagszuckung: erst isotonische, dann isometrische Kontraktion. Beispiel: Kaubewegung, Ohrfeige.

Hinsichtlich der resultierenden Längenänderung des Muskels und der Geschwindigkeit, mit der diese erfolgt, lassen sich Kontraktionen z. B. folgendermaßen charakterisieren:

  • isokinetisch ("gleich schnell"): Der Widerstand wird mit einer gleich bleibenden Geschwindigkeit überwunden.
  • konzentrisch: der Muskel überwindet den Widerstand und wird dadurch kürzer(positiv-dynamisch, überwindend). Die intramuskuläre Spannung ändert sich, und die Muskeln verkürzen sich.
  • exzentrisch: ob gewollt oder nicht, der Widerstand ist größer als die Spannung im Muskel, dadurch wird der Muskel gedehnt (negativ,dynamisch, nachgebend). Es kommt zu Spannungsänderungen und Verlängerung/Dehnung der Muskeln.

Aufbau und Funktion der quergestreiften Muskulatur

  Jeder Muskel ist von einer elastischen Hülle aus Bindegewebe (Faszie) ummantelt, die mehrere Fleischfasern (auch Sekundärbündel) umschließt, welche wiederum mit Bindegewebe (Perimysium externum und Epimysium) umschlossen und zusammengehalten werden, das von Nerven und Blutgefäßen durchsetzt ist und sich an der Faszie befestigt. Jede Fleischfaser unterteilt sich in mehrere Faserbündel (auch Primärbündel), die zueinander verschiebbar gelagert sind, damit der Muskel biegsam und anschmiegend ist. Diese Faserbündel sind eine Vereinigung von bis zu zwölf Muskelfasern, die durch feines Bindegewebe mit Kapillargefäßen vereint sind.

Aktiv wird der Muskel, indem er sich anspannt (Kontraktion) (anschließend wieder entspannt), eine Bewegung und eine Kraft ausübt. Eine Muskelkontraktion wird von elektrischen Impulsen (Aktionspotenzialen) ausgelöst, die vom Gehirn oder Rückenmark ausgesandt und über die Nerven weitergeleitet worden sind.

Bei der Muskelfaser handelt es sich um ein Syncytium, das heißt um eine Zelle, die aus mehreren determinierten Vorläuferzellen (Myoblasten) entsteht und daher mehrere Kerne enthält. Die Muskelfaser kann eine beachtliche Länge von mehr als 30 cm und ungefähr 0,1 Millimeter Dicke erreichen. Sie ist teilungsunfähig, was der Grund ist, warum bei einem Verlust der Faser kein Ersatz nachwachsen kann und bei Muskelzuwachs sich lediglich die Faser verdickt. Das heißt, von Geburt an ist die Obergrenze der Muskelfasern festgelegt. Neben den üblichen Bestandteilen einer tierischen Zelle machen hauptsächlich Myofibrillen, das sind feinste Fäserchen, zu etwa 80 Prozent die Fasermasse aus. Die Membranhülle von Muskelfasern nennt man Sarkolemma.

Funktionelle Einteilung der Skelettmuskulatur

Im Hinblick auf ihre Zusammenarbeit werden Muskeln in gegenspielende und zusammenwirkende unterteilt. Agonisten (Spieler) und Antagonisten (Gegenspieler) haben zueinander eine entgegengesetzte Wirkung. Synergisten dagegen haben eine gleiche oder ähnliche Wirkung und arbeiten deshalb bei vielen Bewegungsabläufen zusammen.

Beispiel: Antagonisten: Bizeps und Trizeps;
Beispiel: Synergisten: für Liegestütze braucht man den Trizeps und die Brustmuskeln (pectoralis major,- minor).
  • Muskeln, die Extremitäten an den Körper heranziehen, heißen Adduktoren (Anzieher), ihre Antagonisten, die Abduktoren (Abzieher), sorgen dafür, dass die Extremitäten vom Körper abgespreizt werden.

Beispiel: äußere und innere Muskeln des Oberschenkels, mit welchen man die Beine spreizen und zusammenführen kann.

  • Flexoren (Beuger) dagegen knicken Finger und Zehen ein, ihre Antagonisten sind die Extensoren (Strecker).
  • Rotatoren (führen Drehbewegungen aus, z.B. der Hand oder des Kopfes)

Skelettmuskulatur des Menschen

  Jeder gesunde Mensch besitzt über 600 willkürliche Muskeln, wobei diese beim Mann etwa 40 %, bei der Frau etwa 23 % der Gesamtkörpermasse ausmachen, die Muskulösität hängt insgesamt aber von der Lebensweise ab: Menschen in postindustriellen Gesellschaften sind durch geringere Bewegung im Alltag und einer einseitigen, zu kohlenhydrat- oder fettreichen Ernährung deutlich unmuskulöser als die Mitglieder von Naturvölkern.

Der größte Muskel ist der Große Rückenmuskel (musculus latissimus dorsi), der stärkste der Kaumuskel (musculus masseter), der längste der Schneidermuskel, die aktivsten die Augenmuskeln und der kleinste der Steigbügelmuskel. Aufgrund des Umfangs mechanischer Arbeit, die die Muskeln leisten müssen, sind sie neben dem Nervensystem einer der Hauptabnehmer von Körperenergie.

Physiologische Muskelinsuffizienz

Aufgrund seiner mikroskopischen Anatomie kann sich ein Muskel weder indefinit zusammenziehen (das Sarkomer kann sich nur um ca. 30 % verkürzen), noch unbegrenzt dehnen (das Sarkomer würde ansonsten reißen). Daraus ergeben sich zwei verschiedene Formen physiologischer Insuffizienz eines Muskels:
Aktive Muskelinsuffizienz tritt auf, wenn der Agonist nicht mehr weiter kontrahieren kann, weil er schon maximal kontrahiert ist.
Passive Muskelinsuffizienz tritt auf, wenn der Agonist nicht weiter kontrahieren kann, da sein Antagonist bereits maximal gedehnt ist.
Bei zweigelenkigen Muskeln ist es möglich, der Muskelinsuffizienz (bezüglich der Muskelwirkung auf ein Gelenk) entgegenzuwirken, indem man den Muskel im anderen Gelenk dehnt (bzw. den Antagonisten verkürzt). So wirkt beispielsweise der Musculus biceps brachii bezüglich seiner Beugekraft im Ellbogengelenk stärker, wenn der Arm retrovertiert ist (also das Ellenbogengelenk hinter dem Körper), da nun der aktiven Insuffizienz des Muskels durch Dehnung im Schultergelenk (der lange Bizepskopf überzieht beide Gelenke) entgegengewirkt wird.

Erkrankungen und Verletzungen der Skelettmuskulatur

  • Die Kontraktur ist eine Versteifung eines Gelenks infolge einer Verkürzung der Muskeln und Sehnen, z. B. verursacht durch Immobilisation, lange Ruhigstellung, fehlendes Muskelspiel u. a. bei Nervenschädigungen und schließlich Schäden im Gelenkspalt. Durch die längere Inaktivität kommt es zunächst zum Muskelabbau.

Siehe auch:

Siehe auch

Literatur

  • Schmidt, Unsicher (Hrsg.): Lehrbuch Vorklinik - Teil B, Deutscher Ärzte-Verlag Köln, 2003 ISBN 3-7691-0442-0
  • Frédéric Delavier: Der neue Muskel-Guide. Gezieltes Krafttraining, Anatomie (OT: Guide des mouvements de musculation). BLV, München 2006, ISBN 3-8354-0014-2
  • Sigrid Thaller, Leopold Mathelitsch: Was leistet ein Sportler? Kraft, Leistung und Energie im Muskel. Physik in unserer Zeit 37(2), S. 86 - 89 (2006), ISSN 0031-9252
 
Dieser Artikel basiert auf dem Artikel Muskulatur aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.