Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Knockout-MausEine Knockout-Maus (engl. knock-out – außer Gefecht setzen) ist eine Maus, bei der mittels einer genetischen Manipulation gezielt ein oder mehrere Gene deaktiviert wurden. Diese Manipulation geschieht an den embryonalen Stammzellen (von Mäusen), die dann in die Keimbahn einer Maus eingebracht werden. Es gibt inzwischen Knockout-Mäuse für die unterschiedlichsten Forschungsgebiete. Mit Hilfe der genetisch veränderten Tiere können beispielsweise biologische Mechanismen untersucht werden. Außerdem eignen sie sich als Modelle für menschliche Erkrankungen oder für pharmakologische Fragestellungen. Für ihre Arbeiten an Knockout-Mäusen wurde der Nobelpreis für Physiologie oder Medizin 2007 an Martin Evans, Mario Capecchi und Oliver Smithies vergeben.[1] Weiteres empfehlenswertes Fachwissen
Der Vorgang des KnockoutsAus Blastozysten eines Inzuchtmäusestamms werden embryonale Stammzellen entnommen und in vitro vermehrt. Nun wird ein Inaktivierungsvektor durch Elektroporation, Mikroinjektion oder einem anderen geeigneten Verfahren in die noch undifferenzierten Stammzellen übertragen. Der Inaktivierungsvektor wird künstlich hergestellt und besteht aus dem zu inaktivierenden Gen, das eine Mutation trägt, so dass es nicht mehr transkribiert werden kann, bzw. das entstehende Protein inaktiv ist und den benachbarten DNA-Abschnitten. Der Austausch zwischen den DNA-Abschnitten erfolgt durch homologe Rekombination. Bei der homologen Rekombination lagern sich die benachbarten Abschnitte des Gens auf dem Vektor an die gleiche Stelle im Maus-Genom und werden in manchen Fällen rekombiniert. In der Regel wird der Sequenz noch ein positiver Marker angehängt. Meist wählt man hier eine Neomycinresistenz. Dadurch hat man die Möglichkeit, später durch Gabe von Neomycin (ein Antibiotikum) zu sehen, welche Zellen die Sequenz eingebaut haben und welche nicht. Nur Zellen mit der Neomycinresistenz überleben. Um auf den Einbau an der richtigen Stelle im Maus-Genom zu testen, wird als Marker das Gen für die Thymidinkinase (HSV-tk) des Herpes-simplex-Virus (HSV) verwendet. Bei einer anschließenden Behandlung mit Ganciclovir (ein Virostatikum) wird ein Produkt gebildet, welches die Replikation der Zellen hemmt. Wenn aber durch den Einbau des gewünschten Inserts der HSV-tk Rahmen zerstört wird, überleben die Zellen die Behandlung mit Ganciclovir. Damit ist sichergestellt, dass der Einbau an einer definierten Stelle passiert ist. Die rekombinierten Stammzellen werden in eine Blastozyste eingesetzt, die wiederum einer vorbehandelten Empfängermaus eingepflanzt wird. In der Leihmutter entwickeln sich dann gemischtzellige Tiere (Chimären). Durch Rückkreuzung gegen den Wildtyp können die heterozygoten Tiere herausgefiltert werden. Durch Kreuzungen erhält man homozygote Tiere, bei denen also alle Zellen des gewünschten Gens zerstört – ausgeknockt sind. Beispiele für Knockout-MäuseBSE/Rinderwahnsinn-resistente MäuseUm die Theorie des späteren Nobelpreisträgers Stanley Prusiner zu bestätigen, wonach Krankheiten wie Rinderwahnsinn (BSE), Jakob-Creutzfeld u.a. durch körpereigene Proteine, den sog. Prionen bzw. deren veränderten Formen, verursacht werden, wurde von Charles Weissmann in Zürich eine K.O.-Maus mit defektem Prion-Gen erzeugt (PrP-/PrP-). Obwohl das Prionprotein im Gehirn normaler Mäuse vorhanden ist, scheinen die K.O.-Mäuse ohne das Prp-Genprodukt voll lebensfähig zu sein. Diese K.O. -Mäuse sind aber gegenüber der Infektion mit sonst tödlichen Prionen resistent, so dass sich daraus die Möglichkeit ergibt, z.B. auch Rinder mit der Resistenz gegen Rinderwahnsinn zu züchten. Biologische MechanismenIn der Chronobiologie werden Knockout-Mäuse benutzt, um die molekularen Mechanismen, die hinter der circadianen Rhythmik stehen, zu verstehen. Durch das gezielte Ausschalten bestimmter Gene und somit ihrer Expression lässt sich anhand von tagesrhythmischen Verhaltensänderungen der Mäuse festmachen, welchen Platz diese Gene und die durch sie codierten Proteine bei der circadianen Rhythmik einnehmen. MedizinBei vielen menschlichen Krankheiten ist der Hintergrund eine gestörte Genfunktion. Die Knockout–Mäuse sind hier ein ideales Krankheitsmodell. Durch die Möglichkeit, Knockout–Mäuse schnell zu züchten, ist es möglich, ein Tiermodell zur Verfügung zu haben, um Aussagen über die Rolle bestimmter Gene bei Krankheiten und ihren Behandlungen machen zu können. Problematisch ist dabei allerdings immer die Übertragbarkeit der Ergebnisse. KritikNeben dem unbestreitbaren Nutzen für die Forschung ist das Knock-out-Verfahren auch Gegenstand der Kritik, da es per Definition an Tierversuche gebunden ist. Eine ausführlichere Diskussion über die ethischen Kritikpunkte siehe dort. Einzelnachweise
Literatur
Siehe auchKategorien: Genetik | Gentechnisch veränderter Organismus | Pharmakologie | Tierversuch |
|
Dieser Artikel basiert auf dem Artikel Knockout-Maus aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |