Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
HerzDas Herz (lateinisch-anatomisch das Cor, griechisch-pathologisch die Kardia, καρδία oder latinisiert Cardia) ist ein muskuläres Hohlorgan, das den Körper durch rhythmische Kontraktionen mit Blut versorgt und dadurch die Durchblutung aller Organe sichert. Dabei arbeitet es genauso wie jede Pumpe, indem es die Flüssigkeit (Blut) ventilgesteuert aus einem Blutgefäß (Hohlvenen bzw. Lungenvenen, vgl. unten) ansaugt und durch ein anderes Blutgefäß (Truncus pulmonalis bzw. Aorta, vgl. unten) ausstößt. Die Lehre von Struktur, Funktion und Erkrankungen des Herzens ist die Kardiologie. Ein Leben ohne Herz ist für höhere Tiere und die Menschen nicht möglich – wohl aber mit einem künstlichen Herzen. Das Herz gehört zu den ersten angelegten Organen während der Embryonalentwicklung. Weiteres empfehlenswertes Fachwissen
GrundaufbauSäugetiereDas Herz der Säugetiere setzt sich aus zwei Teilen zusammen.
Da der Gesamtgefäßwiderstand des Körperkreislaufs rund fünf mal größer ist als der des Lungenkreislaufs, muss die linke Herzkammer (s. u.) eine entsprechend größere Arbeit gegen diesen Widerstand verrichten und weist daher eine deutlich stärkere Wanddicke auf als die rechte. Das Füllungs- und Schlagvolumen beider Herzkammern ist jedoch gleich. AmphibienDas Herz der Amphibien besitzt:
FischeDas Herz der Fische ist das am einfachsten gebaute unter den Wirbeltieren, denn es besteht nur aus einem dünnwandigen Vorhof und einer dickwandigen, muskulösen Kammer. Zwischen den beiden befindet sich eine einzelne Klappe, die einen Rückstrom des Blutes verhindert. Das menschliche Herz
Die Gestalt des Herzens gleicht einem gut faustgroßen, abgerundeten Kegel, dessen Spitze nach unten und etwas nach links vorne weist. Das Herz sitzt beim Menschen in der Regel leicht nach links versetzt hinter dem Brustbein (siehe weiter unten unter Topographie), in seltenen Fällen nach rechts versetzt (die sogenannte Dextrokardie – Rechtsherzigkeit), meist bei Situs inversus (spiegelverkehrter Organanordnung). Das gesunde Herz wiegt etwa 0,5 % des Körpergewichts und im Durchschnitt zwischen 300 und 350 g, wobei es bei dauerhafter Belastung eher mit der (risikoarmen) Vergrößerung schon bestehender Herzmuskelzellen reagiert – ab ca. 500 g, dem so genannten kritischen Herzgewicht, erhöht sich das Risiko einer Mangelversorgung des nunmehr vergrößerten Herzens mit Sauerstoff, da die versorgenden Koronararterien nicht in gleichem Maße mitwachsen. EntwicklungDas Herz beginnt sich schon in der 3. Woche der Embryonalentwicklung zu bilden. Dazu lagern sich Angioblasten vor und seitlich der Prächordalplatte an, der Beginn der Vaskulogenese. Sie bilden zunächst mehrere kleinere Sinus und verschmelzen schließlich zum hufeisenförmigen Herzschlauch. Die Anlage wandert dann nach kaudal und ventral (nach unten Richtung Bauch). Um den Herzschlauch herum liegt Mesenchym aus der Splanchopleura (Seitenplattenmesoderm), welches das Myokard bildet. Das Epikard entsteht aus Mesothelzellen. Der primitive Herzschlauch besteht aus folgenden Anteilen: Sinus venosus Am 23. bzw. 24. Tag beginnt das Herz mit peristaltischen Kontraktionen. Es pulsiert zum ersten Mal. Man unterscheidet am Herzen eine Einstrom- von einer Ausstrombahn. In den Sinus venosus fließen die Dottersackvenen (Vv. vitellinae), die das Blut vom Dottersack in den Embryonalkreislauf leiten, die Nabelvenen (Vv. umbilicales), die sauerstoffreiches Blut aus den Chorionzotten führen und die Kardinalvenen (Vv. cardinales ant. et post.), welche das Blut aus dem eigentlichen Embryonalkreislauf enthalten und es wieder zurückführen, ein. Die Ausstrombahn erhält erst Anschluss an die Pharyngealbogenarterien, später an den Aortenbogen bzw. Truncus pulmonalis. Wichtige Prozesse im Rahmen der Entwicklung sind die Bildung des Cor sigmoideum (vom Schlauch zur Schleife) und die Trennung in 2 getrennte Kreisläufe (Körperkreislauf und Lungenkreislauf). Weiter werden das Atrium primitvum in einen rechten und linken Vorhof (durch Auswachsen von Endokardkissen) und der Ventrikulus primitivus in eine rechte und linke Herzkammer (durch Bildung des muskulösen und membranösen Septums. Die Segelklappen (zwischen Vorhöfen und Kammern) bilden sich ebenfalls aus auswachsenden Endokardkissen, die Taschenklappen durch Bildung von Endothelwülsten. StrukturWandschichtenDas Herz liegt hinter dem Brustbein im Brustkorb in einem bindegewebigen Herzbeutel (Perikard, Pericardium fibrosum), der das Herz vollständig umschließt. Die untere Seite des Perikards ist mit dem Zwerchfell (Diaphragma) verwachsen, so dass die Bewegungen des Zwerchfells bei der Atmung auf das Herz übertragen werden. Die innerste Schicht des Herzbeutels (Pericardium serosum) schlägt am Abgang der großen Blutgefäße (s. u.) in das Epikard um, das dem Herzen direkt aufliegt. Zwischen Perikard und Epikard liegt dann ein mit 10–20 mL Flüssigkeit gefüllter kapillärer Spaltraum, der reibungsarme Verschiebungen des Herzen im Herzbeutel ermöglicht. Diese komplizierten Verhältnisse werden anschaulicher, wenn man sich den Herzbeutel als einen mit Luft gefüllten und verschlossenen Luftballon vorstellt. Die eigene zur Faust geschlossene Hand stellt das Herz dar. Drückt man den Luftballon mit der Faust so weit ein, dass sie vom Ballon vollständig umschlossen wird, so liegt eine Schicht des Luftballons der Faust (dem „Herzen“) direkt an. Diese Schicht, die dem Epikard entspricht, schlägt am Übergang zum Arm in eine äußere Schicht um. Diese äußere Schicht entspricht dem Perikard. Zwischen beiden befindet sich ein mit Luft gefüllter Raum, der dem flüssigkeitsgefüllten Spaltraum des Herzbeutels vergleichbar ist. Unter dem Epikard befindet sich eine Fettschicht (Tela subepicardiaca), in der die Herzkranzgefäße (s. u.) verlaufen. Die dicke Muskelschicht (Myokard) besteht aus spezialisiertem Muskelgewebe, das nur im Herzen vorkommt. Die Innenräume werden vom Endokard ausgekleidet, das auch die Herzklappen (s. u.) bildet. Räume und GefäßeRechte und linke Herzhälfte bestehen jeweils aus einer Kammer (Ventrikel) und einem Vorhof (Atrium). Getrennt werden diese Räume durch die Herzscheidewand. Diese wird in die Vorhofscheidewand (Septum interatriale) und die Kammerscheidewand (Septum interventriculare, Ventrikelseptum) unterteilt. Das Blut kann in den Herzräumen nur in eine Richtung fließen, da sich zwischen den Vorhöfen und Kammern und den sich an die Kammern anschließenden Gefäßen Herzklappen befinden, die wie Ventile arbeiten. In den rechten Vorhof münden die obere und untere Hohlvene (Vena cava superior et inferior). Sie führen das sauerstoffarme (venöse) Blut aus dem großen Kreislauf dem Herzen zu. Zwischen rechtem Vorhof und rechter Kammer befindet sich die Trikuspidalklappe, die bei der Kammerkontraktion (Systole, s. u.) wie ein Ventil einen Rückstrom des Blutes in den Vorhof verhindert. Sie besitzt drei Anteile, die wie Segel über Sehnenfäden an der Kammermuskulatur befestigt sind (daher auch „Segelklappe“). Über einen gemeinsamen Stamm (Truncus pulmonalis) verlassen die beiden Lungenarterien die rechte Kammer. Auch zwischen Kammer und Lungenarterien befindet sich eine Herzklappe, die Pulmonalklappe. Diese Art der Klappen wird wegen ihrer Form auch Taschenklappe genannt. Die Lungenarterien führen das sauerstoffarme Blut dem Lungenkreislauf zu. Durch meist vier Lungenvenen fließt das nun sauerstoffreiche (arterielle) Blut aus dem Lungenkreislauf dem linken Vorhof zu. Von hier aus gelangt es über eine weitere Segelklappe, der Mitralklappe zur linken Kammer. Der Ausstrom geschieht über die Aorta, die wie die Lungenarterie eine Taschenklappe besitzt (Aortenklappe). Arterien transportieren das Blut vom Herzen zu den Organen, Venen von den Organen zum Herzen. Arterien des Körperkreislaufs führen sauerstoffreiches (arterielles) Blut, während Arterien des Lungenkreislaufs sauerstoffarmes (venöses) Blut führen. Umgekehrt ist das Blut in den Venen des Körperkreislaufs sauerstoffarm (venös), das der Lungenvenen sauerstoffreich (arteriell). Während eines Herzzyklus füllen sich zunächst die Vorhöfe, während gleichzeitig die Kammern das Blut in die Arterien auswerfen. Wenn sich die Kammermuskulatur entspannt, öffnen sich die Segelklappen durch den Druckabfall in der Kammer und das Blut fließt aus den Vorhöfen hinein. Unterstützt wird dies durch ein Zusammenziehen der Vorhöfe (Vorhofsystole). Es folgt die Kammersystole: die Kammermuskulatur zieht sich zusammen, der Druck steigt an, die Segelklappen schließen sich und das Blut kann nur durch die nun geöffneten Taschenklappen in die Arterien ausströmen. Ein Rückfluss des Blutes aus den Arterien während der Entspannungsphase (Diastole) wird durch den Schluss der Taschenklappen verhindert. Die Strömungsrichtung wird also allein durch die Klappen bestimmt. Alle vier Klappen des Herzens befinden sich ungefähr in einer Ebene, der Ventilebene, und sind gemeinsam an einer Bindegewebsplatte, dem Herzskelett, aufgehängt. TopographieDas Herz liegt innerhalb des Herzbeutels (Perikard) im Mediastinum: Seitlich grenzen getrennt durch parietale und viszerale Pleura (Brustfell) die linke und rechte Lunge an das Herz. Unten sitzt das Herz dem Zwerchfell auf, das mit dem Herzbeutel verwachsen ist. Oberhalb teilt sich die Luftröhre (Trachea) in die beiden Hauptbronchien (Bifurcatio tracheae), deren linker vom Aortenbogen überquert wird. Hinter dem linken Vorhof liegt in direktem Kontakt die Speiseröhre. Vor dem Herzen befindet sich das Brustbein (Sternum), im oberen Bereich liegt es vor den abgehenden großen Gefäßen. Zwischen Brustbein und Herz liegt der Thymus. Das Herz liegt also praktisch direkt hinter der vorderen Leibeswand in Höhe der zweiten bis fünften Rippe. Die Herzbasis oben reicht nach rechts etwa zwei Zentimeter über den rechten Brustbeinrand hinaus. Unten kommt die Herzspitze knapp an eine gedachte senkrechte Linie heran, die durch die Mitte des linken Schlüsselbeins verläuft (linke Medioklavikularlinie). HerzkranzgefäßeAus dem Anfangsteil der Aorta entspringen die Herzkranzgefäße (Koronararterien). Sie versorgen den Herzmuskel mit Blut. Die Herzkranzarterien sind so genannte „funktionelle Endarterien“. Dies bedeutet, dass eine einzelne Arterie zwar mit anderen Arterien verbunden ist (Anastomosen), dass diese Verbindungen jedoch zu schwach sind, um bei Mangelversorgung eine Durchblutung des Gewebes auf einem anderem Weg zu gewährleisten. Fällt also ein Arterie aufgrund einer Blockade oder einer anderen Störung aus, kommt es in dem von dieser Arterie versorgten Gebiet zu einem Absterben von Gewebe. Das sauerstoffarme Blut aus dem Herzmuskel wird durch die Koronarvenen in den Sinus coronarius geleitet, der direkt in den rechten Vorhof mündet. Es gibt eine linke und eine rechte Koronararterie:
Pumpvorgang
Hauptaufgabe des Herzens: PumpenAufbau und Strukturen des Herzens werden von ihrer überragenden Hauptaufgabe bestimmt, die darin besteht, das Blut ständig durch die beiden Kreisläufe (Lungen- und Körperkreislauf) zu pumpen. Diese Hauptaufgabe hat dazu geführt, daß das Herz auch im Volksmund gern als „Pumpe“ bezeichnet wird („Mir tut die Pumpe weh!“ − „Die Pumpe streikt“). Mechanik der HerzaktionNeben der Muskulatur, dem weitaus größten Teil der Gewebemasse des Herzens, besitzt das Herz ein sog. Herzskelett. Es handelt es sich hier um eine bindegewebige Struktur, die anschaulich beschrieben hauptsächlich aus den Einfassungen der Ventile besteht. Das Herzskelett hat drei wichtige Funktionen:
Das Herzskelett (die Ventilebene) ist ausschlaggebend für die Mechanik bei der Herzaktion: Aufgrund des Rückstoßes bei der Blutaustreibung ist die Herzspitze im Laufe des gesamten Herzzyklus relativ fixiert und bewegt sich kaum. Somit wird folglich bei einer Kontraktion der Kammermuskeln die Ventilebene nach unten in Richtung der Herzspitze gezogen. Es entsteht ein Zug auf die großen Herzgefäße, die sich nun bei Erschlaffung des Kammermuskels reflektorisch kontrahieren und somit die Ventilebene wieder nach oben ziehen. Die Mechanik des Herzens ist demnach ein „Heben und Senken der Ventilebene“. Bei der Senkung der Ventilebene wird somit zum einen das Blut aus der Kammer in den Kreislauf ausgeworfen und es vergrößert sich auch der Vorhof. Es kommt zu einem Unterdruck, wodurch Blut aus den großen Venen in die Vorhöfe strömt. Bei der Erschlaffung des Kammermyokards hebt sich nun die Ventilebene, wodurch die Kammer passiv in die Blutsäule der Vorhöfe ausgedehnt wird und sich dadurch (zu ca. 70–80 %) füllt. Die anschließende Kontraktion der Vorhöfe pumpt nun das restliche Blut in die Kammern und leitet somit einen neuen Herzzyklus ein. Die Vorhofkontraktion ist daher nicht zwingend für das Funktionieren des Herzens nötig, was sich auch daran zeigt, dass (im Gegensatz zum Kammerflimmern), Patienten mit Vorhofflimmern durchaus lebensfähig sind. Siehe auch: Pulsamplitude Erregungsbildungs- und ErregungsleitungssystemDamit sich die elektrische Erregung, die für die Herzaktion verantwortlich ist, über das Herz ausbreiten kann, sind die einzelnen Herzmuskelzellen über kleine Poren in ihren Zellmembranen miteinander verbunden. Über diese Gap Junctions fließen Ionen von Zelle zu Zelle. Dabei nimmt die Erregung im Sinusknoten zwischen oberer Hohlvene und rechtem Herzohr ihren Ursprung, breitet sich erst über beide Vorhöfe aus und erreicht dann über den AV-Knoten in der Ventilebene die Kammern. Die Ventilebene, in der auch die vier Herzklappen liegen, besteht aus Bindegewebe und ist bis auf den AV-Knoten für die elektrische Erregung undurchlässig. In den beiden Herzkammern gibt es ein Erregungsleitungssystem zur schnelleren Fortleitung, das aus spezialisierten Herzmuskelzellen besteht. Diese Zellen bilden vom AV-Knoten ausgehend das His-Bündel, das sich in einen rechten und einen linken Tawara-Schenkel für die rechte und die linke Kammer aufteilt. Der linke Tawara-Schenkel teilt sich in ein linkes vorderes und ein linkes hinteres Bündel. Die Endstrecke des Erregungsleitungssystems wird durch Purkinje-Fasern gebildet, die bis zur Herzspitze verlaufen, dort umkehren und direkt unter dem Endokard (s. o.) in der Arbeitsmuskulatur enden. Zum Teil können sie auch als falsche Sehnenfäden durch die Lichtung der Kammer ziehen. Dieses System ermöglicht den Kammern, sich trotz ihrer Größe koordiniert zu kontrahieren. Erreichen den AV-Knoten aus irgendeinem Grunde keine Vorhoferregungen, so geht von ihm selbst eine langsamere Kammererregung aus (ca. 40 /min). Der AV-Knoten bildet auch einen Frequenzfilter, der zu schnelle Vorhoferregungen (z. B. bei Vorhofflattern oder -flimmern) abblockt (vgl. AV-Block). Das Herz pumpt in Ruhe etwa das gesamte Blutvolumen des Körpers einmal pro Minute durch den Kreislauf, das sind etwa fünf Liter pro Minute. Bei körperlicher Belastung kann die Pumpleistung etwa auf das Fünffache gesteigert werden, wobei sich der Sauerstoffbedarf entsprechend erhöht. Diese Steigerung wird durch eine Verdoppelung des Schlagvolumens und einer Steigerung der Herzfrequenz um den Faktor 2,5 erreicht. Bei jeder Pumpaktion fördert jede Kammer etwas mehr als die Hälfte ihres Füllungsvolumens, ca. 50–100 ml Blut. Die Herzfrequenz (Schläge/Minute) beträgt in Ruhe 50–80/min (bei Neugeborenen über 120–160) und kann unter Belastung bis 200/min ansteigen. Liegt ein zu langsamer Herzschlag vor (unter 60/min im Ruhezustand), wird von einer Bradykardie gesprochen; schlägt das Herz zu schnell (über 100/min im Ruhezustand), spricht man von Tachykardie. Die Herzfrequenz von Tieren ist im wesentlichen abhängig von der Größe des Tiers. Das Herz des Blauwals etwa schlägt selbst bei Anstrengung nur 18 bis 20 mal in der Minute, das der Maus etwa 500 mal pro Minute. RegulationBei körperlicher Belastung wird die Herzleistung durch die Einwirkung sympathischer Nervenfasern gesteigert, die an den Zellen der Arbeitsmuskulatur und auch des Erregungsleitungssystems den Transmitter Noradrenalin freisetzen. Zusätzlich erreicht Noradrenalin zusammen mit Adrenalin das Herz als Hormon über die Blutbahn. Die Wirkung von Noradrenalin und Adrenalin wird überwiegend über Beta-1-Rezeptoren vermittelt und besteht aus einer Steigerung der Herzkraft (positiv inotrop), der Herzfrequenz (positiv chronotrop), der Überleitungsgeschwindigkeit im AV-Knoten (positiv dromotrop), der Erregbarkeit des Herzens (positiv bathmotrop) und der schnellen Entspannung (positiv lusitrop). Der Gegenspieler des Sympathikus ist auch am Herzen der Parasympathikus welcher über den Nervus vagus (X. Hirnnerv) wirkt, der mit dem Transmitter Acetylcholin die Herzfrequenz, die Kontraktionskraft des Herzens, die Überleitungsgeschwindigkeit des AV-Knotens und die Erregbarkeit des Herzens herabsetzt (negativ chronotrop, inotrop, dromotrop und bathmotrop), wobei die Wirkung des Parasympathikus auf die Inotropie und Bathmotropie eher gering ist. Gleichzeitig passt sich die Kontraktionskraft automatisch den Erfordernissen an: Wird der Herzmuskel durch zusätzliches Blutvolumen stärker gedehnt, so verbessert sich dadurch die Funktion der kontraktilen Elemente in den Muskelzellen (Frank-Starling-Mechanismus). Dieser Mechanismus trägt wesentlich dazu bei, dass sich das Schlagvolumen von rechter und linker Kammer mittelfristig nicht unterscheidet: Erhöht sich aus irgendeinem Grund kurzfristig das Schlagvolumen einer Herzhälfte, so führt dies zu einer Vergrößerung des Füllungsvolumens der anderen Herzhälfte bei der folgenden Herzaktion. Dadurch wird die Wand stärker gedehnt und die Kammer kann mit verbesserter Kontraktionskraft ebenfalls ein größeres Blutvolumen auswerfen. Das Herz produziert in seinen Vorhöfen (vor allem im rechten Vorhof) auch dehnungsabhängig ein harntreibendes Hormon, das atriale natriuretische Peptid (ANP), um Einfluss auf das zirkulierende Blutvolumen zu nehmen. Geschlechtliche UnterschiedeNach einer Studie der Universität Liverpool verliert das Herz bei gesunden Männern zwischen dem 18. und 70. Lebensjahr ein Viertel seiner Pumpleistung, sofern es nicht durch körperliche Aktivitäten trainiert wird. Bei Frauen sind derartige Veränderungen nur geringfügig, die Ursachen sind nicht genau geklärt. ErkrankungenIn der Medizin beschäftigt sich die Kardiologie als Spezialisierung der Inneren Medizin mit dem Herzen und der so genannten konservativen Therapie der Herzerkrankungen (für Operationen sind die Herzchirurgen zuständig), bisher aber nicht mit den angeborenen Herzfehlbildungen. Diese fallen, soweit konservativ therapierbar, in das Fachgebiet der Kinderkardiologie, welches sich als Teilgebiet der Pädiatrie in den letzten 40 Jahren entwickelt hat, bzw. bei Notwendigkeit operativer Therapie in den Aufgabenbereich der zumindest in Deutschland als Spezialisierung etablierten Kinderherzchirurgie. Da seit ca. 20 Jahren zunehmend Kinder mit komplexen angeborenen Herzfehlern das Erwachsenenalter erreichen, stellt sich heute die Frage der medizinischen Versorgung für diesen Patientenkreis, der lebenslang auf kardiologische Kontrolluntersuchungen angewiesen ist und bei dem evtl. auch Re-Operationen anstehen. Erst vereinzelt (2004) haben sich bisher Erwachsenenkardiologen intensiv auf dem Gebiet der angeborenen Herzfehler fortgebildet. Kinderkardiologen sind zwar sehr kompetent im Bereich der verschiedenen Krankheitsbilder, jedoch als Pädiater nicht im Bereich der Erwachsenkardiologie ausgebildet. Deshalb werden heute zunehmend interdisziplinäre Sprechstunden in verschiedenen Herzzentren angeboten.
Zitat
Siehe auch |
- Introduction to Cardiothoracic Imaging
- http://www.pflege-kurse.de/info/anatomie/herz1.htm
Animationen
- 3-dim. Animation des schlagendes Herzens mit vielen Infos
- 2-dim. Animation des schlagenden Herzens mit Diagrammen (engl.)
Institutionen
- http://www.dgk-herzfuehrer.de (Deutsche Gesellschaft für Kardiologie)
- http://www.gstcvs.org Deutschen Gesellschaft für Thorax-, Herz- und Gefäßchirurgie
Kategorien: Herz | Kardiologie