Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Hardy-Weinberg-Gleichgewicht
Das Hardy-Weinberg-Gleichgewicht (nach den Mathematiker G. H. Hardy und dem Arzt Wilhelm Weinberg) ist ein Begriff der Populationsgenetik. Zur Berechnung dieses mathematischen Modells geht man von einer in der Realität nicht vorzufindenden idealen Population aus (bestehend aus isozygoten Individuen), in der sich weder die Häufigkeiten der Allele noch die Häufigkeiten der Genotypen verändern, da diese sich im modellierten Gleichgewicht befinden. Dies bedeutet, dass in einer idealen Population keine Evolution stattfindet, da keine Evolutionsfaktoren greifen und diese den hier konstanten Genpool verändern. Das Hardy-Weinberg-Gleichgewicht wird trotz seines modellhaften Charakters zum Ableiten von populationsgenetischen Gesichtspunkten vom Modell auf die Realität verwendet. Insbesondere bei sich im Gleichgewicht befindenden Populationen mit relativ großer Größe lässt sich dieses Modell realistisch anwenden. Ferner findet die Regel Anwendung zur Berechnung des Anteils von heterozygoten Individuen (hier im Beispiel: Aa) bei dominant-rezessiven Erbgängen, da heterozygote Organismen von homozygot dominanten (hier: AA) phänotypisch nicht zu unterscheiden sind, da sich das dominante Allel durchsetzt. Weiteres empfehlenswertes Fachwissen
GeschichteDie Mendel'schen Gesetze wurden im Jahre 1900 wiederentdeckt, allerdings wurden sie noch einige Jahre bezweifelt, da man noch keine Aussage fand, wie daraus eine stabile Nachfolgegeneration entstehen kann. Udny Yule argumentierte 1902 gegen die Anwendung[1], da er glaubte, die dominanten Allele müssten sich mit der Zeit in der Population verbreiten. Der US-Amerikaner William E. Castle zeigte 1903 , dass ohne Selektion die genotypischen Häufigkeiten stabil blieben[2]. Karl Pearson, heute bekannt für seine Beiträge zur Statistik, fand 1903 einen Gleichgewichtspunkt bei p = q = 0.5. Der britische Genetiker Reginald Punnett, der Yule's Gegendarstellung nicht widerlegen konnte, befragte seinen Cricket-Spielpartner G. H. Hardy, einem reinen Mathematiker, der die angewandte Mathematik eigentlich verachtete. Im Jahre 1908 veröffentlichte Hardy einen Beitrag[3], in dem er das "sehr einfache" Problem (seine Worte) mit den Begriffen der Biologen erläuterte.
Damit war dieses Prinzip in der englisch-sprachigen Welt als "Hardy's Gesetz" bekannt, bis Curt Stern 1943 darauf verwies[4], dass unabhängig der deutsche Arzt Wilhelm Weinberg es kurz zuvor im Jahre 1908 ebenfalls formulierte[5]. Teils wird auch Castle's Name mit hinzugenommen, der das Prinzip früh erkannte, jedoch war seine Formulierung nicht identisch. Kennzeichen einer idealen Population
Die ideale Population ist ein theoretisches Konstrukt, da in der Realität mindestens eine der Bedingungen, welche mit Ausnahme der Individuenzahlen alles Evolutionsfaktoren sind, nicht erfüllt werden. Evolution findet also stets dann statt, wenn die obigen Voraussetzungen nicht gelten. BerechnungsformelnDie beiden Formeln für das Hardy-Weinberg Gleichgewicht lauten:
Mit Hilfe dieser Formeln lässt sich die Häufigkeit eines Allels in einer Population berechnen, wenn die Häufigkeiten der Genotypen bekannt sind bzw. die Häufigkeit eines Genotyps, wenn die Allelfrequenz bekannt ist. Trotz des theoretischen Konstrukts der idealen Population, lassen sich die Formeln durchaus mit Erfolg in der Praxis einsetzen. BeispieleBeispiel BlutgruppeDie Vererbung von Blutgruppen ist kodominant von A und B über 0. Nehmen wir an, die Häufigkeiten der Gene für A, B und 0 im Genpool seien r, s und t (mit r+s+t=1), dann hat ein Anteil von r² den Genotyp AA und ein Anteil von 2rt den Genotyp A0. Die bedingte Wahrscheinlichkeit p (Genotyp=AA unter der Bedingung Blutgruppe=A) ist also r²/(r²+2rt). Diese bedingte Wahrscheinlichkeit ist genau dann gleich 0.5, wie in einer idealen Population, wenn r²=2rt, also dann und nur dann, wenn r=2t. Dieselbe Überlegung für BB bzw. B0 liefert s=2t, also 1=r+s+t=5t, also t=0.2, r=s=0.4. Damit hätte dann ein Anteil von r²=0.16 Genotyp AA, 2rt=0.16 hätte A0, insgesamt also 32% Blutgruppe A. Genauso 32% Blutgruppe B. Für Blutgruppe 0 erhält man t²=0.04, also 4%, für AB 2rs=0.32, also 32%. Die Werte einer idealen Population im Hardy-Weinberg-Gleichgewicht für den Erbgang kodominanter Gene (A, B, AB zu 32%, 0 zu 4%) tritt bei menschlichen Blutgruppen nicht auf - tatsächlich sind die Werte in den verschiedenen Populationen weltweit sehr ungleich verteilt. Bei Deutschen findet sich 41% "0" und 43% "A" bei nur 11% "B" und 5% "AB", was ähnlich auch in anderen westeuropäischen Völkern zu finden ist. Im Vergleich dazu tritt bei den zentralasiatischen Völkern der Kalmücken und Burjaten die Blutgruppe "B" zu etwa 40% auf, doppelt so hoch wie andere Blutgruppen. Weltweit ist "0" die häufigste Blutgruppe, die z.B. bei südamerikanischen Indianern bis zu 100% ausmacht. Die Kenntnis des Erbganges und des Wertes einer idealen Population im Hardy-Weinberg-Gleichgewicht gibt einen Hinweis, dass bestimmte Gene in einem Genpool einem Selektionsdruck oder Migrationseinflüssen ausgesetzt waren - am stärksten für das rezessive Gen "0", dem man einen Schutz vor Syphilis zuschreibt. Beispiel PhenylketonurieDie Häufigkeit für das Auftreten der Erbkrankheit Phenylketonurie in der Bevölkerung beträgt 1:10000. Alle Kranken besitzen zwei (rezessive) Allele a; wer mindestens ein (dominantes) Allel A besitzt, erkrankt nicht. Die oben angegebene Häufigkeit ist somit identisch mit der Frequenz des Genotyps 'aa': h(aa) = 0,0001 Damit ist q = 0,01 (als Wurzel aus h(aa)) und p = 0,99 (wegen p + q = 1). D.h. auch: 1% aller Gene (zu den Allelen A und a) in der Bevölkerung sind 'defekt'. Alle Träger des (heterozygoten) Genotyps 'Aa' sind Überträger des defekten Allels a. Ihre Häufigkeit in der Bevölkerung beträgt h(Aa) = 2 pq = 0,0198 - das sind annähernd 2%. Von 10000 Individuen haben also (theoretisch)
q²= 1:10000, damit q=1:100 Heterozygotenhäufigkeit: 2x1(=0,99)x0,01 = 0,02 Beispiel Rot-Grün-SehschwächeDie Rot-Grün-Sehschwäche wird X-chromosomal rezessiv vererbt. Die Krankheit tritt dann auf, wenn ein defektes X-Chromosom vorliegt, welches nicht durch ein nicht defektes X-Chromosom überdeckt wird. Es seien 9 % der Männer von der Rot-Grün-Sehschwäche betroffen. Wie viele Frauen sind dann betroffen?
Es gibt 2 Allele für das X-Chromosom:
Bezogen auf beide Geschlechts-Chromosomen ergibt das folgende Häufigkeit bei Männern:
Zusammenfassung Genotyp:
Die Rot-Grün-Sehschwäche tritt bei Frauen phänotypisch nur beim Auftreten von 2 defekten x-Chromosomen auf. Das sind 0,405 % bezogen auf alle Kinder oder 0,81 % bezogen auf die weiblichen Nachkommen. Siehe auchQuellen
Kategorien: Theoretische Biologie | Evolution | Genetik |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dieser Artikel basiert auf dem Artikel Hardy-Weinberg-Gleichgewicht aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |