Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Grün fluoreszierendes Protein
Das grün fluoreszierende Protein (Abkürzung GFP; engl. green fluorescent protein) ist ein erstmals 1961 von Osamu Shimomura[2][3] beschriebenes Protein aus der Qualle Aequorea victoria, das bei Anregung mit blauem oder ultraviolettem Licht grün fluoresziert. Seine kaum zu überschätzende Bedeutung in der Biologie, insbesondere der Zellbiologie, liegt in der Möglichkeit, GFP mit beliebigen anderen Proteinen Gen-spezifisch zu fusionieren. Durch die Fluoreszenz des GFP kann so die räumliche und zeitliche Verteilung des anderen Proteins in lebenden Zellen, Geweben oder Organismen direkt beobachtet werden. Weiteres empfehlenswertes Fachwissen
EigenschaftenDie Primärstruktur besteht aus 238 Aminosäuren mit einer Molekülmasse von 26,9 kDa.[4] Der eigentliche Fluorophor des GFP bildet sich offenbar autokatalytisch aus der Tripeptidsequenz Ser65–Tyr66–Gly67 innerhalb der Polypeptidkette. Diese intrinsische Fluoreszenz basiert nicht auf einem Umbau durch ein externes Enzym oder nachträglich integrierte Substanzen, kommt also vollständig ohne eventuell zellspezifische Prozessierungssysteme aus. In seinem Ursprungsorganismus erhält GFP seine Anregungsenergie durch strahlungsfreien Energietransfer vom Photoprotein Aequorin. In Anwendungen wird GFP immer optisch angeregt. Das unmodifizierte, natürlich vorkommende GFP hat zwei Anregungsmaxima. Das erste liegt bei einer Wellenlänge von 395 nm, das zweite bei 475 nm. Die Emissionswellenlänge liegt bei 509 nm. AnwendungDouglas Prasher isolierte, klonierte und sequenzierte 1992 die cDNA von GFP.[5] Seit es Prasher 1994 gelang GFP als Marker für andere Proteine zu benutzen, ist diese Technik in wenigen Jahren zu einer Standardmethode der Zellbiologie geworden.[6] Zur Herstellung von GFP-Fusionsproteine wird die DNA des zu untersuchenden Proteins mit der GFP-DNA verbunden und in eine Form gebracht (siehe Vektor), die von der Zelle aufgenommen werden kann, so dass sie das Fusionsprotein selbstständig herstellt (Transfektion). In vielen Fällen wird das zu untersuchende Protein noch an die korrekte Stelle in der Zelle transportiert, und das GFP kann durch Fluoreszenzmikroskopie Aufschluss über die zeitliche und räumliche Lokalisation des Zielproteins in der Zelle geben. GFP ist in nahezu allen eukaryontischen Zellen als nicht-toxisch einzustufen und eignet sich daher perfekt für die Untersuchung biologischer Prozesse in vivo. Einziges Problem kann bei sehr hoher Expression die Bildung von Peroxid bei der Entstehung des Fluorophors sein, welches die Zelle unter Stress setzen und schädigen könnte. Auch kuriose Anwendungen, wie z.B. ein Leuchtkaninchen oder ein in den USA im Tierhandel unter dem Namen GloFish erhältlicher, genetisch manipulierter Zebrabärbling (Danio rerio) sind zu finden.[7] VariantenMittlerweile gibt es diverse modifizierte Versionen des Original-GFP, die andere Fluoreszenzspektren aufweisen. Entsprechend der Farbe heißen diese zum Beispiel CFP (cyan) oder YFP (yellow). Bei geschickter Anwendung sind einzelne Zellorganellen unterschiedlich einfärbbar und mittels Entmischung (spektrale Dekonvolution) dann getrennt beobachtbar. Als entscheidend ist auch noch die Entwicklung von enhanced-Varianten wie z.B. dem enhanced GFP (eGFP) oder enhanced YFP (eYFP) zu sehen. Immer größere Bedeutung bekommen auch fluoreszente Proteine aus Korallen (Anthozoa).[8] Zu nennen sind hier die zoanFP (aus Zoanthus sp.) oder auch das rot fluoreszierende Protein drFP583 (aus Discosoma), Handelsname DsRed. Viele dieser Proteine wurden bereits mutiert und in ihren Eigenschaften verändert um andere Eigenschaften zu gewinnen. Viele fluoreszierende Proteine sind Tetramere. Dies wird genutzt, indem man sich unterschiedlich schnell entwickelnde Monomere einbaut, dabei verändert sich also die Farbe des Proteins mit der Zeit.[9] Solche Fluoreszenz-Timer sind extrem nützlich, um beispielsweise das Alter von Organellen feststellen zu können. Die DsRed-Mutante E5 hat beispielsweise diese Eigenschaft. Quellen
Literatur
Siehe auchKategorien: Protein | Molekularbiologie | Zellbiologie |
|
Dieser Artikel basiert auf dem Artikel Grün_fluoreszierendes_Protein aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |