Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Glomeruläre FiltrationsrateDie Glomeruläre Filtrationsrate (GFR) gibt das Gesamtvolumen des Primärharns an, das von allen Glomeruli beider Nieren zusammen, in einer definierten Zeiteinheit, gefiltert wird. Dies sind bei einem Menschen mit normalen Blutdruckwerten ca. 0,12 Liter pro Minute bzw. ca.170 Liter pro Tag. Die GFR sinkt physiologisch mit zunehmendem Alter oder pathologisch bei Nierenerkrankungen verschiedenster Art. Die GFR ist für die Abschätzung der Nierenfunktion die wichtigste Größe. Die GFR wird im klinischen Alltag durch die Ermittlung der Kreatininclearance näherungsweise ermittelt (siehe auch renale Clearance). Weiteres empfehlenswertes Fachwissen
ClearanceClearance bezeichnet die Menge einer Substanz, die pro Zeiteinheit aus dem Blut durch die Nieren entfernt wird. Um die GFR ermitteln zu können, wird die Clearance einer Markersubstanz betrachtet, die im Tubulussystem der Niere weder sezerniert noch rückresorbiert wird. Exogene MarkerExogene Markersubstanzen werden durch Injektion und Infusion zugeführt. Goldstandard der Indikatorsubstanzen ist Inulin. Inulin ist ein physiologisch inertes Polysaccharid, das im Glomerulus frei filtriert, und durch die Niere weder sezerniert, rückresorbiert, synthetisiert oder metabolisiert wird. Inulin ist knapp, teuer und schwer zu messen. Die Bestimmung der Inulin-Clearance erfordert zudem eine kontinuierliche Infusion und mehrere Blutentnahmen. Daher wird die Bestimmung der Inulin-Clearance in der Regel nur noch im Rahmen wissenschaftlicher Untersuchungen durchgeführt. Alternativ werden heute die Röntgenkontrastmittel Iothalamat und Iohexol, sowie radioaktiv markierte Substanzen wie 99mTc-DTPA und 51Cr-EDTA als exogene Markersubstanzen eingesetzt. Endogene MarkerFür die klinische und ambulante Routinediagnostik sind exogene Marker in der Regel zu aufwändig. Die glomeruläre Filtrationsrate wird daher im klinischen Alltag anhand der endogenen Marker Kreatinin und Cystatin C bestimmt[1]. KreatininKreatinin entsteht im Muskelgewebe durch Abbau von Kreatin. Im Plasma ist Kreatinin in relativ konstanter Konzentration vorhanden. Kreatinin wird frei im Glomerulus filtriert, und durch die Niere weder rückresorbiert noch metabolisiert. 10-40% des im Urin ausgeschiedenen Kreatinin stammen allerdings nicht aus der glomerulären Filtration, sondern werden durch die Nierentubuli in den Primärharn sezerniert. Das Serum-Kreatinin steigt mit zunehmender Nierenfunktionseinschränkung an. In den frühen Stadien einer Nierenerkrankung ist das Serum-Kreatinin aber ein ungenauer Marker von geringer Sensitivität, insbesondere bei Menschen mit geringerer Muskelmasse, wie Frauen, älteren Menschen oder Diabetikern. Wird ausschließlich das Serum-Kreatinin als Marker einer Nierenfunktionseinschränkung benutzt, kann die Diagnose einer Niereninsuffizienz übersehen werden. Dies kann zu unterlassener Behandlung, falscher Einschätzung des Herz-Kreislauf-Risikos und Fehlern bei der Dosierung von Medikamenten führen. Aus diesem Grund sind genauere Methoden zur Bestimmung der Nierenfunktion unerlässlich. Kreatinin-ClearanceZur Ermittlung der Kreatinin-Clearance bedarf es des Sammelns des Urins über einen definierten Zeitraum (im klinischen Alltag: t = 24 Stunden). Es wird das Volumen (V) des Sammelurins bestimmt, sowie die Kreatininkonzentration. Des Weiteren wird die Plasmakonzentration des Kreatinins aus einer Blutprobe des Patienten bestimmt. Die Plasmakonzentration des Kreatinins ist gleich der Konzentration im glomerulären Filtrat (Primärharn) cKrea,Plasma = cKrea,glom.Filtrat . Das Prinzip der Berechnung ist die Überlegung, dass die im Glomerulum abfiltrierte Menge Kreatinins in einer gewissen Zeit (t), gleich der Menge Kreatinins ist, die in eben dieser Zeitspanne im Endharn ausgeschieden wird. Das ist nur der Fall, wenn die Indikatorsubstanz, wie oben erwähnt, nicht tubulär sezerniert oder resorbiert wird:
Da sich die Menge (n) nicht direkt bestimmen, aber durch die o.g. im klinischen Setting ermittelbaren Werte berechnen lässt (n = c * V), verändert sich die Formel folgendermaßen:
Diese Formel lässt sich einfach umstellen und so die Glomeruläre Filatrationsrate berechnen.
Zur genaueren Berechnung wird manchmal noch die Körperoberfläche als korrigierender Faktor mit einbezogen. Der Zusammenhang zwischen Serum-Kreatinin-Konzentration und glomerulärer Filtrationsrate ist nicht proportional, sondern antiproportional. Bei einer hohen glomerulären Filtrationsrate entsprechen daher kleine Änderungen des Serum-Kreatinins großen Änderungen der glomerulären Filtrationsrate, bei einer niedrigen glomerulären Filtrationsrate entsprechen dagegen große Änderungen des Serum-Kreatinins nur kleinen Änderungen der glomerulären Filtationsrate. So entspricht bei einer 60-jährigen Frau ein Anstieg des Serum-Kreatinins von 0,8 auf 0,9 mg/dl einem Abfall der glomerulären Filtrationsrate um 10 ml/min von 78 auf 68 ml/min, ein gleich großer Abfall der glomerulären Filtrationsrate von 20 auf 10 ml/min geht dagegen mit einem Anstieg des Serum-Kreatinins von 2,6 auf 4,8 mg/dl einher. Einschränkungen der Kreatinin-Clearance
Näherungsformeln, die auf der Bestimmung des Serum-Kreatinin beruhenIn der Praxis ist das Sammeln des Urins aufwändig und mit Fehlern behaftet. Zudem hängt die Konzentration des Kreatinin im Serum nicht nur ab von der Nierenfunktion, sondern auch von der Muskelmasse, und diese wiederum ist abhängig von Alter, Geschlecht und Hautfarbe. So entspricht ein Serum-Kreatinin von 1,3 mg/dl bei einem 20-jährigen Mann einer glomerulären Filtrationsrate von 75 ml/min, bei einer 80-jährigen Frau dagegen einer glomerulären Filtrationsrate von 50 ml/min. Um dennoch auf das Sammeln des Urins verzichten zu können, wurden Näherungsformeln entwickelt, die es erlauben, die glomeruläre Filtrationsrate aus dem Serumkreatinin zu bestimmen. [2] Cockcroft-Gault-FormelDie Cockcroft-Gault-Formel wurde 1973 entwickelt. Zu Grunde lagen die Daten von 249 Männern mit einer Kreatinin-Clearance zwischen 30 und 130 ml/min.
Das Ergebnis ist nicht auf die Körperoberfläche bezogen. Die Cockcroft-Gault-Formel überschätzt die glomeruläre Filtrationsrate, da sie die tubuläre Sekretion nicht berücksichtigt. MDRD-Formel (Modifikation of Diet in Renal Disease)Die MDRD-Formel wurde 1999 anhand der Daten von 1628 ambulanten Patienten mit chronischer Nierenkrankheit entwickelt. Die Einbeziehung der Hautfarbe berücksichtigt die erhöhte Muskelmasse von Amerikanern schwarzafrikanischer Herkunft. Es gibt mehrere Varianten der MDRD-Formel, am gebräuchlichsten ist die Kurzform (Angabe in exponentieller und in logarithmischer Schreibweise):
Die MDRD-Formel berücksichtigt die tubuläre Sekretion von Kreatinin und ist bei Menschen mit moderater bis schwerer Nierenfunktionseinschränkung genauer als Cockcroft-Gault-Formel und Kreatinin-Clearance. Einschränkungen der NäherungsformelnDie Näherungsformeln sind validiert für ambulante, chronisch nierenkranke Patienten mit moderater bis schwerer Nierenfunktionseinschränkung (Stadium 3 und 4). Die Formeln sind nicht geeignet zur Bestimmung der glomerulären Filtrationsrate bei Personen mit normaler Nierenfunktion oder leichter Nierenfunktionseinschränkung. Insbesondere die MDRD-Formel unterschätzt bei Menschen mit einer glomerulären Filtrationsrate über 60 ml/min diese um bis zu 30 ml/min! Ebenso wenig geeignet sind die Näherungsformeln zur Bestimmung der glomerulären Filtrationsrate bei Krankenhauspatienten mit akuter Nierenfunktionsverschlechterung, bei Menschen mit schwerem Übergewicht, bei stark verminderter Muskelmasse (Amputation von Gliedmaßen, Unterernährung) oder bei Menschen mit besonders hoher (Nahrungsergänzungen bei Bodybuildern) oder niedriger (Vegetarier) Kreatin-Zufuhr mit der Nahrung. Als Mittel zum bevölkerungsweiten Screening und zur Überwachung der Nierenfunktion im besonders wichtigen Frühstadium der diabetischen Nephropathie sind die Näherungsformeln ebenfalls nicht geeignet[3]. Cystatin CCystatin C ist ein kleines, nicht glykosyliertes Protein, das frei glomerulär filtriert wird. Nach der Filtration wird Cystatin C tubulär rückresorbiert und abgebaut. Nur geringe Mengen erscheinen im Urin. Möglicherweise ist Cystatin C ein besserer Filtrationsmarker als Kreatinin, insbesondere bei leichter Nierenfunktionseinschränkung oder akutem Nierenversagen. Praktische AnwendungenKlassifizierung der NierenfunktionDie Nierenfunktionsleistung wird gemäß der Empfehlung der [[KDOQI]= Kidney Disease Outcome Quality Initiative ] in folgende Stufen eingeteilt: Grad / Clearance ml / min Stadium der Nierenschädigung
Diagnose chronischer NierenkrankheitenEine chronische Nierenkrankheit liegt vor, wenn über drei Monate die glomeruläre Filtrationsrate unter 60 ml/min liegt oder über einen ebensolchen Zeitraum Eiweiß im Urin nachweisbar ist. Da die Näherungsformeln bei einer Reduktion der glomerulären Filtrationsrate unter 60 ml/min hinreichend genaue Werte liefern und die Eiweißausscheidung anhand des Eiweiß/Kreatinin-Quotienten im Spontanurin quantifiziert werden kann, ist zur Diagnose einer chronischen Nierenkrankheit das Sammeln des Urins über 24 Stunden nicht mehr zwingend nötig[4]. Quantifizierung der Progression chronischer NierenkrankheitenWegen der antiproportionalen Korrelation zwischen Serum-Kreatinin und glomerulärer Filtrationsrate lässt sich die Rate des Nierenfunktionsverlustes in einer bestimmten Zeiteinheit nur ungenau aus der Änderung des Serum-Kreatinins abschätzen. Bei einem 50-jährigen entspricht ein Anstieg des Serum-Kreatinins von 1,0 auf 2,0 mg/dl einem Abfall der glomerulären Filtrationsrate um 46 ml/min, ein weiterer Anstieg des Serum-Kreatinins von 2,0 auf 3,0 mg/dl entspricht dagegen nur noch einem Abfall der glomerulären Filtrationsrate um 14 ml/min. Komplikationen chronischer NierenkrankheitenBei einem Abfall der glomerulären Filtrationsrate unter 60 ml/min treten mannigfaltige Komplikationen auf, insbesondere Bluthochdruck, Malnutrition, Blutarmut und Knochenerkrankungen. Da diese Komplikationen frühzeitig behandelt werden müssen, sind bei einem Abfall der glomerulären Filtrationsrate unter 60 ml/min zusätzliche diagnostische und therapeutische Maßnahmen erforderlich. Bei einem weiteren Absinken der glomerulären Filtrationsrate unter 30 ml/min sollte ein Nierenspezialist hinzugezogen werden, da bei einer glomerulären Filtrationsrate unter 15 ml/min ein Nierenersatzverfahren wie Dialyse oder Nierentransplantation erforderlich wird. Dosierung von MedikamentenViele Medikamente (in Deutschland im Mittel jeder 6. Wirkstoff) werden durch die Nieren ausgeschieden. Bei eingeschränkter Nierenfunktion ist daher oftmals eine Anpassung der Dosis erforderlich. Insbesondere die seit 1973 gebräuchliche Cockroft-Gault-Formel wird in großem Umfang bei der Berechnung von Medikamentendosierungen in Abhängigkeit von der Nierenfunktion eingesetzt (siehe auch Dosisanpassung bei Niereninsuffizienz). Als weiterführende Informationsquelle ist hier die Webseite Dosing.de des Universitätsklinikums Heidelberg zu empfehlen. Glomeruläre Filtrationsrate als RisikofaktorMit zunehmendem Abfall der glomerulären Filtrationsrate steigt die Häufigkeit kardiovaskulärer Erkrankungen wie Schlaganfall und Herzinfarkt. Eine verminderte glomeruläre Filtrationsrate ist damit ein kardiovaskulärer Risikofaktor. Eine besonders hohe Korrelation besteht zwischen kardiovaskulärem Risiko und Cystatin C – Spiegel. Messung der Clearance versus NäherungsformelnWegen der Einschränkungen der Näherungsformeln ist eine Bestimmung der glomerulären Filtrationsrate mittels 24 h – Sammelurin erforderlich
Die Bestimmung der Nierenfunktion mittels exogener Markersubstanzen ist in der Regel nur noch im Rahmen von Forschungsvorhaben erforderlich. Quellenangaben
Siehe auch
Kategorien: Physiologie | Nephrologie |
||
Dieser Artikel basiert auf dem Artikel Glomeruläre_Filtrationsrate aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |