Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Desulfuromonadales
Die Desulfuromonadales bilden eine Ordnung innerhalb der Deltaproteobacteria. Wie alle Proteobakterien sind sie gram-negativ. Sie nutzen durch anaerobe Atmung elementaren Schwefel, Mangan oder Eisen zur Energiegewinnung im Stoffwechsel. Man spricht von der Fe(III)-, Schwefel- oder Mn(IV)-Reduktion. Auch Nitrat und Trichloressigsäure, sowie auch andere Metalle wie Technetium oder Cobalt können von einigen dieser Bakterien reduziert und somit im Energiestoffwechsel eingesetzt werden. Die Arten dieser Ordnung sind meist stäbchenförmig. Meist sind sie durch eine Geißel beweglich, Pelobacter und Malonomonas allerdings nur in frühen Wachstumsstadien der Kolonien, andere sind unbeweglich. Weiteres empfehlenswertes Fachwissen
EigenschaftenDie Mitglieder dieser Ordnung sind meist obligat anaerob, das heißt, sie können nur unter völligem Ausschluss von Sauerstoff leben, es gibt jedoch einige mikroaerobe Arten. Beispielsweise toleriert Malonomonas geringe Sauerstoffkonzentrationen. Desulfuromusa kysingii ist ebenfalls geringfügig sauerstofftolerant, wächst jedoch unter Sauerstoffeinfluss nicht. Die meisten Desulfuromonadales sind mesophil, ihr Wachstumsoptimum liegt also bei mittleren Temperaturen. Geopsychrobacter ist psychrophil (kälteliebend), es wächst bei Temperaturen zwischen 4 und 30 °C, das Optimum liegt bei 22 °C. [1]. Geothermobacter ehrlichii ist thermophil und wurde gefunden in einer Hydrothermalquelle des Juan-de-Fuca-Rückens. Es wächst bei Temperaturen zwischen 35 and 65 °C [2]. Desulfuromonadales wurden von anoxischen Habiten im Süßwasser, Meerwasser und Brackwasser isoliert. Malonomonas kommt in anoxischen Meeressedimenten vor, im Süßwasser wurde diese Gattung noch nicht gefunden. Geobacter scheint in Böden die vorherrschende Rolle innerhalb der Fe(III)-reduzierenden Bakterien zu spielen [3]. ÖkologieEinige Arten von Desulfuromonas können in Gegenwart von Acetat in einer syntrophen Assoziation mit Arten von phototrophen, schwefelbildenden Bakterien, den grünen Schwefelbakterien (Chlorobiaceae), leben. Bei diesem Syntrophismus wird der Energiestoffwechsel und damit das Wachstum beider Partner durch Austausch von bestimmten Stoffwechselprodukten gegenseitig gefördert. Beispielsweise bildet das grüne Schwefelbakterium Prosthecochloris aestuarii aus Schwefelwasserstoff elementaren Schwefel (S0) woraus Desulfuromonas wiederum, solange Acetat vorhanden ist, durch die Schwefelreduktion Schwefelwasserstoff (H2S) bildet [4]. Somit bildet sich ein verkürzter Schwefelkreislauf. Durch die Reduktion von dreiwertigen Eisen-Ionen (Fe3+) zu zweiwertigen (Fe2+) oder von elementarem Schwefel zu Schwefelwasserstoff spielen Desulfuromonadales eine wichtige Rolle im Schwefelkreislauf und Eisenkreislauf der Erde. Weiterhin sind Eisen-reduzierende Bakterien interessant in Bezug auf die Evolution. Es wird vermutet, dass die Fe(III)-Reduktion neben der Schwefelreduktion eine der ersten Formen der anaeroben Atmung von Bakterien ist [5]. Man findet diese Form des Stoffwechsels vor allem in den früh abzweigenden Entwicklungslinien der Bakterien und Archaeen. Einige Geobacter-Stämme sind durch ihre Fähigkeit, aromatische Verbindungen wie Toluol abzubauen, für die Reinigung von schadstoffbelasteten Böden und Grundwässern bedeutend. Geobacter metallireducens kann als Elektronenakzeptor auch Uran verwenden: Das in Form von Uranyl-Ionen (UO22+) wasserlösliche sechswertige Uran U(VI) wird hierbei durch die bakterielle Übertragung von 2 Elektronen zu vierwertigem Uran U(IV) reduziert, welches wiederum als das wasserunlösliche Mineral Uraninit (UO2) ausfällt. Dadurch ist dieses Bakterium für die Säuberung von mit Uran belastetem Wasser anwendbar. StoffwechselEnergiequellen dieser Ordnung sind anaerobe Atmung sowie Fermentationen. Bei der anaeroben Atmung werden von Desulfuromonadales - statt Sauerstoff wie bei der aeroben Atmung - elementarer Schwefel (S0), Polysulfide oder dreiwertiges Eisen (Fe3+) in der Atmungskette als Elektronenakzeptoren genutzt und somit reduziert. Als Elektronendonatoren dienen einfache organische Verbindungen wie z. B Acetat. Die freigesetzte Energie wird zur ATP-Bildung eingesetzt. Die organischen Elektronendonatoren werden meist vollständig über den Citronensäurezyklus zu CO2 oxidiert. Bei der Schwefelreduktion (Schwefelatmung) wird Schwefel zu Schwefelwasserstoff (H2S) reduziert, bei der Eisenreduktion (Eisenatmung) dreiwertige Eisen-Ionen (Fe3+) zu zweiwertigen (Fe2+). Auch andere Stoffe können reduziert werden, z. B. Mangan(IV), Cobalt, Technetium, Nitrat und Trichloressigsäure. Die stammesgeschichtliche Verwandtschaft der Eisen(III)- und Mangan(IV)-reduzierenden Bakterien ist vielfältig. Viele dieser Bakterien, welche hierbei Acetat vollständig oxidieren, findet man bei den Geobacteraceae. Andere mit dieser Eigenschaft sind z. B. Arten von Shewanella (Gammaproteobacteria), Thiobacillus ferrooxidans (Betaproteobacteria) und Deferribacter themophilus (Deferribacteres). Die Mangan(IV)-, Eisen(III)- und Schwefelreduktion dienen ausschließlich der Energiegewinnung, nicht dem Baustoffwechsel, z. B. für den Aufbau von Aminosäuren, sind also nicht assimilatorisch, die Endprodukte, Mn(II), Fe(II) bzw. Schwefelwasserstoff werden sofort ausgeschieden. SchwefelreduktionAlle Arten der Desulfuromonadaceae sowie Geobacter sulfurreducens, Geobacter humireducens und Pelobacter carbinolicus zählen zu den Schwefelatmern. Bei Pelobacter carbinolicus wurde die Schwefel- wie auch die Eisenreduktion nachgewiesen [6]. Einfache organische Verbindungen wie Acetat dienen als Elektronendonatoren und Baustoffquellen. Weitere für verschiedene Arten verwertbare Stoffe sind u.a.: Glutamat, Fumarat, Alanin, Oxalacetat und Pyruvat. Desulfuromonas palmitatis oxidiert u. a. auch langkettige Fettsäuren. Außerdem kann es auch elementaren, molekularen Wasserstoff H2 im Energiestoffwechsel als Elektronendonator verwenden. Desulfuromonas acetoxidans reduziert elementaren Schwefel zu Schwefelwasserstoff und nutzt Acetat als Elektronendonator, das dabei über den Citronensäurezyklus vollständig zu CO2 oxidiert wird:
Im Englischen spricht man auch von den "sulfur reducing bacteria". Die Vorsilbe desulfur- in der Systematik steht für die Schwefel-Reduktion. Bei der Schwefelatmung dieser Bakterien werden Sulfat, Thiosulfat und Sulfit nicht als Elektronenakzeptoren genutzt. Dies unterscheidet sie von den Sulfatatmern (sulfatreduzierenden Bakterien). Einige Sulfatreduzierer (Sulfatatmer) sind allerdings auch in der Lage, elementaren Schwefel als Elektronenakzeptor einzusetzen. Einige weitere bekannte Bakterien, die elementaren Schwefel reduzieren, sind: Desulfovibrio gigas, Arten von Desulfomicrobium, Desulfurella acetivorans und Wolinella succinogenes. Einige Schwefel-reduzierende Archaeen sind: Sulfolobus ambivalens, Pyrobaculum islandicum, Stygiolobus azoricus und Thermodiscus maritimus. Eisenreduktion und andere ElektronenakzeptorenEisen ist weitverbreitet in der Natur und ist ein wichtiges Stoffwechselelement, welches schon früh im Laufe der Evolution für den Energiestoffwechsel genutzt wurde. Viele Arten der Ordnung Desulfuromonadales reduzieren Fe3+ zu Fe2+. Die Eisen(III)-Ionen können aus verschiedenen Eisenverbindungen abgespalten werden, einige Beispiele sind: Eisen(III)-chlorid, verschiedene Eisenoxide und Eisen(III)-citrat. Geobacter metallireducens reduziert Fe(III) zu Fe(II) beispielsweise mit Acetat als Elektronendonator:
Alle Arten von Geobacter, Geothermobacter und Geopsychrobacter sowie Pelobacter carbinolicus, P. acetylenicus und P. venetianus nutzen dreiwertiges Eisen (Fe3+) als Elektronenakzeptor. Viele Arten von Desulfuromonadaceae nutzen außer Schwefel auch Eisen als Elektronenakzeptor. Bei Desulfuromusa kysingii und bei einigen Arten von Geobacter (z. B. Geobacter metallireducens und Geobacter humireducens) kann auch Nitrat als Elektronenakzeptor dienen. Nitrat wird zu Ammoniak reduziert und nicht zu elementarem, molekularem Stickstoff N2 wie es bei der Denitrifikation der Nitratatmer der Fall ist. Mangan wird ebenfalls von einigen Arten, z. B: Desulfuromonas palmitatise, Geobacter metallireducens und Desulfuromonas acetexigens, reduziert und als Elektronenakzeptor genutzt. Mn(IV) wird hierbei zu Mn(II) reduziert. Trichlorobacter (Geobacteraceae) nutzt Trichloressigsäure als Elektronenakzeptor und reduziert es zu Dichloressigsäure. Es besteht eine relativ große Vielfalt von Metallen, die von einigen Arten im Energiestoffwechsel reduziert werden, beispielsweise Cobalt Co(III) und Technetium Tc(VII) von Geobacter sulfurreducens. Tc(VII) wird auch von Geobacter metallireducens als Elektronenakzeptor genutzt. Ob Tc(VII) hierbei auch das Wachstum dieser Arten ermöglicht, ist allerdings unklar. Auch Uran U(VI), kann von Geobacter metallireducens als einzigem Elektronenakzeptor eingesetzt werden und wird zu U(IV) reduziert. Dieses Bakterium wächst, wenn U(VI) als einziger Elektronenakzeptor vorhanden ist [7]. Auch Shewanella putrefaciens, eine Bakterienart der Gammaproteobacteria, zeigt diese Fähigkeit. Bei anderen Fe(III)- und Mangan(IV)-Atmern sowie bei vielen Sulfat-reduzierenden Bakterien (z. B. Desulfovibrio) wurde ebenfalls die Fähigkeit nachgewiesen, U(VI) zu reduzieren, doch Wachstum wurde hierbei nicht beobachtet [8]. FermentationAuch Fermentationen werden von einigen Mitgliedern der Desulfuromonadales durchgeführt. In der Regel ist dabei Acetat das Endprodukt. Alle Arten von Desulfuromusa können diesen Energiestoffwechsel zusätzlich zur anaeroben Atmung nutzen. Auch alle Mitglieder von Pelobacteraceae sind zur Fermentation fähig. Hier entsteht zusätzlich zu Acetat auch Ethanol (P. acetylenicus, P. carbinolicus und P. venetianus), bei P. propionicus auch Propionat. P. acidigallici bildet Acetat und CO2. Malonomonas fermentiert ebenfalls und kann auf einem Agarmedium mit Malonat als einziger Kohlenstoffquelle kultiviert werden. Bei Malonat entsteht Acetat als Endprodukt, Malat und Fumarat können ebenfalls von dieser Art fermentiert werden, Endprodukte sind dann Succinat und CO2. GeschichteDie Schwefelreduktion, bei der Acetat als Elektronendonator fungiert, wurde erst 1976 durch das Bakterium Desulfuromonas acetoxidans entdeckt [9]. Geobacter metallireducens wurde 1987 von Lovley und Mitarbeitern aus Sedimenten des Potomac Rivers isoliert und als Bakterienstamm GS-15 bezeichnet [10]. 1988 wurde sein Energiestoffwechsel mit vollständiger Oxidation von Acetat (und anderen Kohlenstoffverbindungen), verbundenen mit Fe(III)-Reduktion, nachgewiesen [11] und 1993 wurde das Bakterium als Geobacter metallireducens benannt. Geobacter metallireducens ist ein intensiv untersuchter Eisenreduzierer und ist u. a. von besonderen Interesse der Geomikrobiologie und vor allem der Erforschung des Stoffwechselwegs der Eisenreduktion. SystematikDie Ordnung Desulfuromonadales besteht aus folgenden Familien und Gattungen [12]:
Eine weiteres, älteres, aber noch genutztes System besteht nur aus zwei Familien [13]:
Quellen
Literatur
|
|||||||||||||||||
Dieser Artikel basiert auf dem Artikel Desulfuromonadales aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |