Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
CerebralshuntAls Cerebralshunt bezeichnet man ein medizinisches Gerät (i.d.R. Implantat) das Gehirnflüssigkeit aus den Gehirnkammern körperintern z.B. in den Bauchraum abführt, um den Hirndruck auf einen Normalwert zu reduzieren. Erhöhter Hirndruck verursacht den Untergang von Hirngewebe. Untergegangenes Hirngewebe ist zwar unwiederbringlich verloren, ein Fortschreiten des Prozesses wird jedoch aufgehalten. Weiteres empfehlenswertes Fachwissen
EinführungBei einem Hydrocephalus liegt entweder eine Resorptionsstörung des Liquor cerebrospinalis, ein Verschluss der Verbindungen zwischen den Hirnventrikeln oder eine Überproduktion von Liquor vor. Resorptionsstörungen resultieren meist aus intracerebralen Blutungen (ICB) unter Einbeziehung der Ventrikel (intraventrikuläre Hirnblutung - IVH) im Neugeborenenalter. Dabei verkleben die Arachnoidalzotten im Bereich der Spinalnervenaustritte und der venösen Blutleiter in der Dura mater (Sinus durae matris) durch die im Blut enthaltenen Proteine und blockieren die Liquorresorption. In der Folge steigt der intracranielle Druck (Intracranial Pressure, kurz ICP, Hirndruck), bei einem Neugeborenen wächst der Schädel überproportional, da die Schädelnähte (Suturen) noch nicht fest miteinander verbunden sind. In diesem Fall ist die Anlage eines Liquorshunts das Mittel der Wahl. Durch ein Shuntsystem wird das Liquor aus den Ventrikeln körperintern z.B. in den Bauchraum abgeführt und der Hirndruck auf einen Normalwert reduziert. Im Allgemeinen geht der Hydrocephalus einher mit dem Untergang von Hirngewebe durch die Überdrucksituation im Schädel. Untergegangenes Hirngewebe ist irreversibel verloren. FunktionsprinzipEin Shuntsystem hat die Aufgabe, ab einem definierten intraventrikulären Druck (IVD) Liquor abzuführen und gleichzeitig dafür zu sorgen, dass nicht zu viel Liquor abgeführt wird und somit eine Überdrainage stattfindet. Zu berücksichtigen sind weiterhin der Druck im Bauchraum des Patienten (intraperitonealer Druck, ID) sowie der hydrostatische Druck (HD), also die Druckdifferenz, die sich aus dem Höhenunterschied zwischen Ventrikelsystem und Bauchraum des sitzenden oder stehenden Patienten ergibt. Zur Berechnung des intraventrikulären Druckes gilt die nachfolgende Formel, wobei OD den Öffnungsdruck des Ventils darstellt. Die Angabe H2O benennt die Einheit des Druckes („cm Wassersäule“). -> Intraventrikulären Druck (IVD) = Intraperitonealer Druck (ID) + Öffnungsdruck des Ventils (OD) - hydrostatischer Druck (HD) -> IVD = ID + OD - HD Beispiel Der liegende Patient hat:
Umgesetzt auf die Formel -> IVD = ID + OD - HD ergibt sich -> 0 + 10 - 0 = 10 cm H2O IVD. Der gleiche Patient steht jetzt aufrecht. Er hat:
Umgesetzt auf die Formel -> IVD = ID + OD - HD ergibt sich -> 0 + 10 - 50 = -40 cm H2O IVD. Hier erfährt der Patient im Stehen eine Überdrainage. Beispiel zwei zeigt somit auch die großen Nachteile von einstufigen Shuntventilen. Entweder erfährt der Patient im Stehen eine Überdrainage oder im Liegen einen Überdruck in den Ventrikeln. Erschwert wird die Situation dadurch, dass adipöse Patienten einen höheren intraperitonealen Druck aufweisen als schlanke Patienten. Arten von ShuntsystemenGrundsätzlich unterscheidet man zwischen VA- und VP-Shuntsystemen. Bei den eher selten indizierten ventrikulo-aterialen (VA) Shuntsystemen erfolgt die Liquorableitung in den rechten Herzvorhof. Bei den am häufigsten indizierten ventrikulo-peritonealen Shuntsystemen erfolgt die Liquorableitung in die Bauchhöhle (Peritoneum). Bei bestimmten Indikationen ist auch eine externe Ventrikeldrainage (etwa ein Codman Drain) angezeigt, etwa nach Shuntexplantation aufgrund einer Shunt infektion. Allerdings ist die externe Drainage nur temporär anwendbar, da das Neuinfektionsrisiko ungleich höher als bei einer internen Ableitung ist. Aufbau von ShuntsystemenShuntsysteme bestehen grundsätzlich aus folgenden Komponenten:
VentrikelkathederDer Ventrikelkatheder dient der eigentlichen Drainierung der Hirnventrikel. Es handelt sich um einen am Ende abgerundet verschlossenen Silikonschlauch, der im Endbereich mit kleinen Löchern versetzt ist, so dass Liquor aus den Ventrikeln in den Schlauch eintreten kann. Nachdem (meist im hinteren Bereich des Stirnbeins) ein Loch gebohrt wurde, wird einer der beiden Seitenventrikel mit dem Katheder punktiert. Bohrlochumlenker / BohrlochreservoirMeist ist der Ventrikelkatheder direkt mit einem Bohrlochumlenker oder einem Bohrlochreservoir verbunden. Der Bohrlochumlenker sitzt auf dem Ventrikelkatheder und winkelt den Katheder um 90 Grad ab, so dass der daran angrenzende Konnektor parallel zum Schädel liegt. Alternativ werden auch Bohrlochreservoire angeboten, die eine Liquorpunktion zur ICP-Messung und Liquordiagnostik direkt an den Ventrikeln ermöglichen. Des Weiteren werden Pumpkammern angeboten, die das Freispülen eines verklebten Ventils ermöglichen. Auch Kombinationen aus beiden werden angeboten. Neuere Geräte (aus Reservoir und Pumpkammern bestehend) beinhalten außerdem ein Rückschlagventil, das beim Pumpen einen schlagartigen Druckanstieg in den Ventrikeln verhindert. Der Einsatz von Reservoir, Pumpkammern oder einer Kombination aus beiden erfolgt individuell, indikationsabhängig. DistalkathederHäufig ist der Distalkatheder direkt mit dem Umlenker / Reservoir / Pumpkammer verbunden. Er verbindet Ventrikelkatheder und Umlenkeinheit mit dem eigentlichen Shuntventil. ShuntventilDas Shuntventil dient der Regulation des ICP und ist vielfach eine Kombination aus verschiedenen Ventiltypen. Meist werden heutige Ventilsysteme hinter dem Ohr implantiert. Konstruktionsbedingt verhindert ein Shuntventil außerdem den Rückfluss von Liquor und verhindert somit auch das Eindringen von Flüssigkeiten aus dem Peritonealraum in das Ventrikelsystem. Somit stellt das Shuntventil auch immer eine Infektionsbarriere dar. Aterial- / PeritonealkathederDer Aterial- oder Peritonealkatheder führt das Liquor vom Ventil entweder in den rechten Vorhof des Herzens (Aterialkatheder) oder in die Bauchhöhle (Peritonealkatheder). Die jeweiligen Silikonschläuche des Distal- sowie des Peritoneal- oder Aterialkatheders haben einen Außendurchmesser von etwa 2,3 Millimeter und werden unter der Haut durchgezogen. So bedarf es für eine Shuntimplantation maximal drei bis vier kleiner Hautschnitte. VentiltypenHeutzutage gibt es auf dem Weltmarkt etwa 130 verschiedene Ventiltypen, die jedoch alle auf vier Grundtypen von Shuntventilen basieren. Zusammen mit den in jeweils unterschiedlichen Druckstufen angebotenen Typen kann der Neurochirurg somit heute zwischen etwa 450 unterschiedlichen Ventilen wählen. GrundtypenKugel-Konus-VentileBei diesem Ventiltyp verschließt eine von einer Feder in einen Metallkonus gepresste Kugel die Liquorpassage. Die Federspannung bestimmt dabei den Öffnungsdruck des Ventils. Ist der Liquordruck auf die Kugel höher als die Federkraft, mit der die Kugel in den Konus gepresst wird, öffnet sich das Ventil und das Liquor kann passieren. Diese Ventilkonstruktionen arbeiten in der Regel sehr präzise und zuverlässig. Bekanntester Vertreter dieses Ventiltyps ist das Cordis-Hakim-Standard-Ventil. MembranventilBei einem Membranventil drückt eine aus hochflexiblem Silikon bestehende Membran gegen eine starre ringförmige Öffnung und verschließt dadurch die Liquorpassage. Wird auf die Membran ein definierter Druck ausgeübt, deformiert sich die Membran und das Liquor kann durch die entstehende Öffnung passieren. Flexibilität und Vorspannung der Membran bestimmen hier den Öffnungsdruck des Ventils. Der Nachteil dieses Ventiltyps ist der so genannte Silikon-Memory-Effekt. Die Silikonmembran verändert im Laufe der Nutzung ihre physikalischen Eigenschaften, womit sich auch die Kenngrößen des Ventils ändern. Es hängt also sehr vom verwendeten Silikon-Grundstoff ab, wie ausgeprägt und schnell der Silikon-Memory-Effekt zum Tragen kommt. Bekannte Vertreter dieses Ventiltyps sind die Heyer-Schulte-Ventile. SchlitzventilBei dem Schlitzventil gibt es wiederum zwei verschiedene Grundformen. Beim einfachen (linearen) Schlitzventil befinden sich nahe dem verschlossenen Ende eines Silikonschlauches mehrere Einschnitte. Liegt ein niedriger Druck an, so pressen die Silikonlippen aneinander und Liquor kann nicht passieren. Erhöht sich der Druck, treten die Schlitze auseinander und Liquor kann passieren. Weitere Bauformen sind Kreuzschlitze oder Entenschnabelschlitze, die jedoch prinzipiell die gleiche Funktion erfüllen. Ebenso wie beim Membranventil kommt auch hier der Silikon-Memory-Effekt zum Tragen. Ein weiterer Nachteil ist, dass die bisweilen sehr kleinen Schlitze zur Liquorpassage sehr leicht verstopfen können. Bewertung der GrundtypenAlle vorgestellten Grundtypen wurden in den fünfziger Jahren des zwanzigsten Jahrhunderts entwickelt. Erstmals war mit diesen Ventilen eine effektive Möglichkeit der Hydrocephalustherapie geschaffen worden. Allen Typen ist jedoch gemeinsam, dass sie stets nur eine statische Druckstufe aufweisen, die für den liegenden Patienten geeignet ist. Sitzt oder steht der Patient, kommt es durch die hydrostatische Druckdifferenz zwangsläufig zu einer Überdrainage des Ventrikelsystems. Da durch die Überdrainage bisweilen erhebliche Komplikationen eintreten können, müssen diese Ventile als veraltet bewertet werden, wenn sie ohne Zusatzventile implantiert werden. Technisch betrachtet handelt es sich bei allen Ventilen um Differentialdruck-Ventile. Zur Vermeidung der Überdrainage wurde mit den beginnenden siebziger-Jahren des zwanzigsten Jahrhunderts zunehmend weitere Shunttechnologien entwickelt, die aber dennoch auf die Erkenntnisse mit den vorgestellten Grundtypen zurückgreifen. Moderne VentiltypenBei der Entwicklung der modernen Shuntventile wurden im Wesentlichen vier Wege beschritten, aus denen
hervorgegangen sind. Die letzteren beiden werden häufig auch unter dem Sammelbegriff der hydrostatischen Ventile zusammengefasst, da sie der Berücksichtigung des hydrostatischen Druckes beim stehenden oder sitzenden Patienten dienen. Einstellbare VentileDie einstellbaren Ventile basieren im Wesentlichen auf der Kugel-Konus-Technik, bei der eine Kugel mit einer Feder in einen Konus gepresst wird. Im Unterschied zum statischen Kugel-Konus-Ventil ist beim einstellbaren Ventil die Vorspannung der Feder mit Hilfe eines rotierenden Ankers veränderbarbar. Auf dem Anker sitzen Stabmagnete, mit dessen Hilfe von außen mit einem dazu passenden Stabmagneten oder einem rotierenden Magnetfeld der Anker verstellt und die Vorspannung der Feder verändert werden kann. Hierdurch kann das Ventil sehr differenziert auf die Anforderungen des Patienten eingestellt werden, ohne dass ein Eingriff erforderlich ist. Bei den ersten Generationen dieser Ventile, die 1983 vorgestellt wurden, zeigte sich jedoch immer wieder, dass bereits im Haushalt vorkommende Magnetfelder wie etwa die eines Kopfhörers ausreichend waren, um das Ventil zu verstellen. Bei den ersten Generationen dieser Ventile war zudem unmittelbar nach einem MRT eine Röntgenuntersuchung zur Einstellungskontrolle des Ventils erforderlich. Heute erhältliche Ventile sind jedoch darauf ausgelegt, selbst gegen ein 3-Tesla-Magnetfeld eines MRT resistent zu sein. Zur Einstellungskontrolle wird heute eine Art Kompass verwendet, der über das Ventil gehalten wird und die momentane Druckstufe anzeigt. Das einstellbare Ventil an sich ist nicht geeignet, einer Überdrainage im Sitzen oder Stehen vorzubeugen. Vielfach werden einstellbare Ventile auch als „programmierbare Shunts“ bezeichnet, dieser Begriff ist jedoch nicht ganz korrekt, da er eine Funktion suggeriert, die das Ventil nicht erfüllen kann. Selbst einstellende / selbstregulierende VentileSelbsteinstellende oder auch flussgesteuerte (flow-gesteuerte) Ventile basieren auf der Überlegung, dass pro Zeiteinheit nur so viel Liquor abgeführt werden muss, wie auch tatsächlich produziert wird. Dazu wurde erstmals mit dem Cordis-Orbis-Sigma-Ventil ein Shuntventil vorgestellt, das unabhängig vom Differentialdruck an den Shuntenden pro Zeiteinheit eine konstante Liquormenge abführt. Bei einem konventionellen Ventil würde bei einem erhöhten Differentialdruck auch die abzuführende Liquormenge erhöht sein. Dies gelingt dadurch, dass eine elastische Membran mit einer Öffnung versehen ist, die durch einen konischen Stößel mehr oder weniger eingeengt wird. Liegt der Patient, ist der Differentialdruck zwischen den Shuntenden gering und somit der Druck auf die Membrane niedrig: Die Membrane wird nur gering belastet, an dieser Stelle ist der konische Stößel relativ dünn und es kann mäßig viel Liquor abdrainiert werden. Sitzt der Patient aufrecht oder steht, erhöht sich der Differentialdruck dramatisch. Der Druck auf die Membrane steigt und sie deformiert sich in Richtung einer im Durchmesser größten Stelle des konischen Stößels, die Liquorableitung wird einem vergleichsweise größerem Widerstand ausgesetzt und das Lumen entsprechend reduziert. Für den Fall einer lebensbedrohlichen Hirndruckerhöhung wurde eine weitere Notfalldruckstufe implementiert. Hier wird die Membrane derart weit ausgelenkt, dass keine Behinderung mehr durch einen Stößel vorliegt und Liquor in hohen Mengen abfließen kann. Bewertung selbst einstellender / selbstregulierender VentileZur Erinnerung: Die zu Grunde liegende Idee dieses Ventiltyps ist, dass nicht mehr Liquor abgeführt wird als pro Zeiteinheit produziert wird. Könnte man diesen Wert genau definieren, wäre das Konzept sinnvoll. Die meisten Ventile gehen von einem Wert von 20 Milliliter pro Stunde aus und versuchen, diesen Wert unabhängig vom Differentialdruck annähernd einzuhalten. Dies ist jedoch auch der größte Nachteil dieser Systeme: Die Liquorproduktion variiert im Laufe eines Tages erheblich. Es gibt Zeiten, in denen deutlich mehr als 20 Milliliter Liquor pro Stunde produziert wird, ebenso gibt es Zeiten, in denen diese Menge deutlich unterschritten wird. Weiterhin ist bekannt, dass die Liquorproduktion mit zunehmenden Alter abnimmt. Somit gibt es im Tagesrhythmus immer wieder Zeiten mit zu hohem und zu niedrigem ICP. Risiken stellen sich bei diesem Ventiltyp außerdem in der Behandlung des Normaldruckhydrocephalus in Verbindung mit B-Wellen ein. Diese beschreiben ein kurzfristiges Ansteigen des Blutvolumens im Kopf, dessen Druckanstieg bei einem Hydrocephalus nicht adäquat ausgeglichen werden kann und somit zu sehr hohen Druckspitzen führen kann. Flussgesteuerte Ventile sind konzeptionell nicht in der Lage, dies zu verhindern. Konstruktionsbedingt neigen diese Ventiltypen auch zum Verstopfen. Anti-Siphon-VentileDas Anti-Siphon-Ventil (ASD = Anti-Siphon-Device) beruht auf dem Funktionsprinzip, dass beim aufrecht stehenden oder sitzenden Patienten eine Sogwirkung am Shuntventil auftritt. Dadurch kommt eine Membrane an einem Kunststoffbauteil zu liegen und unterbindet somit den Liquorfluss. Liegt kein Sog mehr an, kann sich die sehr elastische Membrane zurückbewegen und den Liquorfluss wieder frei geben. Da Anti-Siphon-Ventile immer mit konventionellen Ventiltypen kombiniert werden müssen, dauerte es nicht lange, bis es Komplettlösungen am Markt gab. Bekannteste Vertreter sind die Heyer-Shulte oder die PS Medical Delta-Ventile. Bewertung der Anti-Siphon-VentileKritischer Punkt dieser Ventile ist die Heranziehung des atmosphärischen Druckes als Referenzdruck auf der liquorabgewandten Seite. Im Labor und direkt nach der Implantation ist dies noch kein Problem. Dies tritt erst nach der vollständigen Narbenbildung ein. Da die Ventile meist im Unterhautfettgewebe liegen, erhöht sich nach der Narbenbildung der Referenzdruck ganz erheblich. Dies erklärt auch die Tatsache, dass die Ventile anfangs ausgezeichnet funktionierten und mit abgeschlossener Narbenbildung Probleme bereiteten, die bis zum vollständigen Verschluss der Ventile führten. Nach anfänglich adäquater Vermeidung der Überdrainage kam es nach einigen Wochen zu Überdrucksymptomatiken: Der Hydrocephalus kehrte zurück. Aus heutiger Sicht sind diese Ventile daher als nicht mehr zeitgemäß zu beurteilen, da die Gefahr eines Shuntversagens zu hoch ist. Gravitationsgesteuerte VentileBei den gravitationsgesteuerten Ventilen unterscheidet man zwischen den Counterbalancer und den Switcher-Typen. Die zuerst entwickelten Counterbalancer beruhen auf dem Ausgleich der Kräfte ähnlich wie bei einem Fahrstuhl, bei dem ein Gegengewicht zu dem eigentlichen Fahrkorb existiert. Richtet sich der erwachsene Patient auf, lastet auf dem Ventil ein Druck von etwa 50 Zentimeter Wassersäule. Durch eine Kugel-Konus-Kombination wird diesem Gewicht ein entsprechender Widerstand entgegengesetzt. Erst wenn der Druck höher wird, werden die Kugeln aus dem Konus gehoben und das überschüssige Liquor kann passieren. Legt sich der Patient hingegen hin, fallen die Kugeln aus dem Konus und das Liquor kann passieren. Mit dem Cordis-Hakim-Lumbar-Ventil wurde erstmals ein derartiger Ventiltyp geschaffen. Prinzipiell berücksichtigt dieser Typ jedoch nur zwei Zustände: stehend und liegend. Zwischenstufen sind nicht möglich. Christoph Miethke löste dieses Problem mit dem Miethke Shunt-Assistent, bei dem die Kugel nicht vollständig aus dem Konus fällt, sondern nur in begrenztem Umfang aus dem Konus kippt und somit jede erdenkliche Zwischenstufe ermöglicht. Während der Miethke Shunt-Assistent lediglich ein Zusatzventil ist, stellen sowohl das Cordis-Hakim-Lumbar-Ventil als auch der Miethke PaediGAV eine „All-in-one“-Lösung dar, die sowohl die Bedürfnisse des liegenden als auch des aufgerichteten Patienten berücksichtigen. Das erste am Markt erhältliche Switcher-Ventil war das Sophysa AS Ventil. Das Funktionsprinzip beruht auf einem Anker, der sich immer wieder nach unten ausrichtet und dabei eine Federvorspannung ändert, die somit eine Kugel unterschiedlich stark in einen Konus presst. Leider war diese Konstruktion ein Fauxpas, denn das Ventil erkannte ausschließlich, ob sich ein aufrecht stehender Patient auf den Rücken legte, nicht jedoch, ob er sich etwa auf die Seite oder den Bauch legte. Gefährliche Unterdrainagen waren bisweilen die Folge. Erst mit dem Miethke Dual-Switch-Ventil wurde ein Switcher-Ventil vorgestellt, das in der Praxis funktionierte. Switcher oder CounterbalancerCounterbalancer kompensieren den hydrostatischen Druck eher aggressiver als Switcher. Counterbalancer sollten daher eher bei Patienten eingesetzt werden, bei denen die Gefahr einer Überdrainage als sehr hoch eingeschätzt wird. Switcher sind bei Patienten zu bevorzugen, bei denen eine permanente und suffiziente Liquordrainage zur optimalen Therapie wichtig ist. Wichtig ist auf jedem Fall der richtige Implantationsort und hier die korrekte Lage in Bezug zur Körperachse! Bewertung der VentiltypenAus heutiger Sicht ist die Kombination eines Kugel-Konus-Ventils für die liegende Druckstufe mit einem gravitationsgesteuerten Ventil für die hydrostatische Druckstufe als der Gold-Standard für die Behandlung eines chronischen Hydrocephalus zu bewerten. ShuntkomplikationenGemessen am gesamten Spektrum der kinder- bzw. neurochirurgischen Operationen hat die Shuntoperation nicht den höchsten technischen Schwierigkeitsgrad. Trotzden kann es aufgrund der Eigenarten dieses besonderen Krankheitsbildes zu Shuntkomplikationen wie „Überdrainage“ und „Infekt“ kommen. ÜberdrainageBei der Überdrainage wird – einfach gesagt – mehr Liquor über das Shuntsystem abgeführt, als produziert wird. Dies braucht zunächst einmal nichts Schlimmes zu sein, insbesondere, wenn es nur temporär auftritt. In großen Metaanalysen zeigt sich, dass nur etwa 20 Prozent der überdrainierten Patienten jemals etwas davon bemerken (die Zahlen schwanken zwischen vier und 70 Prozent!). Der Körper ist durchaus in der Lage, gewisse Formen der Überdrainage selbstständig zu kompensieren. Nur dort, wo dies nicht gelingt, zeigen sich dann auch Symptomatiken. Folgende Symptome einer Überdrainage lassen sich klassifizieren:
Therapie der ÜberdrainageEine asymptomatische Überdrainage braucht im Prinzip nicht therapiert werden. Bei leichten Symptomen wie etwa Kopfschmerzen sollte zunächst die konservative Therapie durchgeführt werden. Der Patient sollte über mehrere Tage flach liegen und viel Flüssigkeit zu sich nehmen. Bleibt dies erfolglos, sind ggf. operative Maßnahmen angezeigt. Verfügt der Patient über ein einstellbares Ventil, so kann dies gegebenenfalls neu justiert werden. Hat der Patient nur ein herkömmliches Ventil, kann ein weiteres gravitationsgesteuertes Ventil implantiert werden, um einer Überdrainage in aufrechter Körperhaltung vorzubeugen. Die Implantation erfolgt in der Regel problemlos bei örtlicher Betäubung in das bestehende Shuntsystem. Bei gravierenden Fällen kann ein temporärer Totalverschluss des Shuntsystems angezeigt sein. Dazu wird um den Silikonschlauch eine Metallklammer oder ein Nahtfaden gelegt und somit der Shunt verschlossen. Sind die Symptome dauerhaft behoben, wird der Clip wieder entfernt, der Shunt ist wieder durchgängig. Therapie der Folgen einer Überdrainage.Sind bereits manifeste Folgen eingetreten, etwa eine Kraniosynostose oder ein subdurales Hämatom, müssen neben der Überdrainage meist auch deren Folgen behandelt werden. Verschlossene Schädelnähte können beispielsweise sehr erfolgreich mit einer Sutturenektomie behandelt werden, bei der die verschlossenen Nähte wiederum operativ geöffnet werden. Ein subdurales Hämatom wird – sofern es sich nicht verkapselt hat – meist durch den Körper selber abgebaut. Ist das Hämatom hingegen verkapselt, muss ggf. auch dieses durch Anlegen eines externen Drainagesystems abdrainiert werden. ShuntinfektionShuntinfektionen treten durchschnittlich in 5 Prozent der Fälle auf. Die Literatur berichtet aber auch von bis zu 12 Prozent, gleichsam existieren Berichte, in denen von 1 Prozent der Fälle gesprochen wird. Das klingt zunächst einmal sehr beunruhigend, man muss sich jedoch stets vor Augen halten, dass der Shunt ein nicht durchbluteter Fremdkörper ist, an dessen Oberfläche der Silikonschläuche sich leicht Bakterien einnisten können. Diese Bakterien (wie etwa Staphylococcus epidermidis) können weiterhin einen Schleimfilm bilden, der sie für Antibiotikabehandlungen quasi nicht angreifbar macht. Schlimmste Folge einer Shuntinfektion kann das Miteinbeziehen der Hirnhäute oder weiterer Organe sein. In jedem Fall ist der Shunt nicht mehr zu retten und muss explantiert werden. Ein neuer Shunt kann erst dann wieder implantiert werden, wenn die Shuntinfektion vollständig ausgeheilt ist. Ersatzweise kan man sich in einem solchen Fall vorübergehend mit einer externen Ventrikeldrainage behelfen. HistorieDer Durchbruch in der modernen Hydrocephalustherapie gelang 1949. Frank Nulsen entwickelte ein Kugel-Konus-Ventil, das im Mai des selben Jahres durch Eugen Spitz in Philadelphia erstmals implantiert wurde. Der Ingenieur Ted Heyer und Robert Pudenz entwickelten 1955 das erste transversale Schlitzventil. Der aus Philadelphia stammende Ingenieur John D. Holter führte unterdessen einen verzweifelten Kampf gegen die Zeit um das Leben seines an einem angeborenen Hydrocephalus leidenden Sohns. In der Rekordzeit von wenigen Wochen entwickelte er das erste Doppel-Schlitz-Silikon-Ventil, das als das Hydrocephalus-Ventil schlechthin gelten sollte und der Shunttherapie die neurochirurgische Akzeptanz beibringen sollte. Es war erneut Eugen Spitz, der das Ventil erstmals im März 1956 implantierte. Im Sommer des gleichen Jahres begann die Massenproduktion des als Spitz-Holter-Ventil bekanntgewordenen Systems. Im Jahr 1958 traf der aus Deutschland emigrierte Uhrmacher Rudi Schulte auf Pudenz und Heyer und verbesserte deren Schlitzventil. 1960 folgte seine Eigenentwicklung, das Schulte-Membranventil. Ebenfalls 1958 entwickelte Ames sein Distal-slit-Ventil, das für die ventrikuloperitoneale Implantation vorgesehen war. In den 1970er-Jahren verbesserte Raimondi das System und vertrieb es schließlich als Raimondi-Uni-Shunt. Literatur
Kategorien: Neurochirurgie | Kinderchirurgie |
|||
Dieser Artikel basiert auf dem Artikel Cerebralshunt aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |