Meine Merkliste
my.bionity.com  
Login  

Immunhistochemie



  Als Immunhistochemie (IHC) (auch Immunhistologie oder Immun- bzw. Antikörperfärbung genannt) wird in der Biologie und Medizin eine Methode bezeichnet, mit der Proteine mit Hilfe von Antikörpern sichtbar gemacht werden können. Damit kann beispielsweise bestimmt werden, in welchem Gewebe das Protein vorhanden ist und auch, in welchem Kompartiment der Zelle es lokalisiert ist. Beispielsweise färben Transkriptionsfaktoren, die im Zellkern lokalisiert sind, nur den Zellkern an, membranständige Proteine Teile der Zellmembran usw. Für Antikörperfärbungen wird fixiertes Gewebe verwendet, das entweder aus vollständigen Tieren (Embryonen von Zebrafisch, Drosophila melanogaster etc.) oder aus Gewebeschnitten bestehen kann (zum Beispiel Mikrotomschnitte von Organen der Maus oder des Menschen). Zellen aus Körperflüssigkeiten oder Punktaten u.ä., die mittels Zentrifugation auf einen Objektträger aufgebracht wurden, oder auf einem Objektträger gewachsen sind (Zellkulturtechnik), können ebenfalls immunhistochemisch untersucht werden.

In der medizinischen Histologie dient die IHC in der Regel der Identifikation und Klassifizierung von Tumorzellen, die bestimmte Antigene exprimieren. So können morphologisch gleich erscheinende Tumore, die sich aber in ihrem Wachstums- oder Absiedelungsverhalten (Aggressivität, Metastasen) oder in ihrer Therapieantwort unterscheiden, zugeordnet werden. Seit kurzem können bestimmte Zelleigenschaften direkt in Zusammenhang mit der Wirksamkeit von therapeutischen Molekülen (targeted therapy, z.B. Herceptin bei best. Brustkrebs) gebracht werden. Die Forschung arbeitet intensiv an solchen "Tumorantikörpern", die direkt gegen Krebszellen gerichtet sind.

Inhaltsverzeichnis

Prinzip der immunhistochemischen Färbung

Der Nachweis beruht auf der Affinität von Antikörpern zu einer bestimmten Gewebeeigenschaft (Epitop) als Antigen-Antikörper-Reaktion. Im Idealfall kommt es zu einer spezifischen und starken Bindung zwischen Antikörper und Epitop. Der Antikörper ist mit einem Detektionssystem gekoppelt, das sein Vorhandensein im Präparat sichtbar macht. Mittels verschiedener Detektionssysteme können schon geringe Mengen an Epitop verstärkt dargestellt werden. Das Ziel ist es, ein Signal am Ort des Epitops (und nur dort) in ausreichender Stärke zu erkennen.

Der Antikörper, der gegen das zu findende Epitop gerichtet ist, wird als Primärantikörper bezeichnet. Der Antikörper sollte sich durch hohe Spezifität und Affinität auszeichnen und keine Kreuzreaktionen mit ähnlichen Epitopen zeigen. In einem Mehrschrittverfahren werden die einzelnen Komponenten des Detektionssystems dem Präparat zugeführt. Deshalb ist die IHC relativ langwierig und fehleranfällig. Das Ergebnis ist auch beeinflussbar durch Fixierungsart, Fixierungsdauer, Einbettungsmethoden, Vorbehandlungsmethoden (Antigen-Retrieval) der Präparate, etc. Eine Standardisierung der Testdurchführung sollte daher angestrebt werden. Die Antigen-Antikörper-Reaktion ist abhängig von Temperatur, Konzentration, Inkubationszeit, Agitation und dem optimalen Reaktionsmileu (pH-Wert, Salzkonzentrationen).

Um diese Variablen möglichst konstant zu halten und das große Probenvolumen im Labor bearbeiten zu können, wurden IHC-Automaten unterschiedlicher Bauart eingeführt. Die Beurteilung der IHC erfolgt immer im morphologischen Context. Hinderlich können sich dabei unspezifische Reaktionen und allgemeine Hintergrundfärbungen (endogene Peroxidase, endogenes Biotin) erweisen. Ist nur ein schwaches Signal nachweisbar, lässt es sich durch verschiedene Methoden (z.B TSA) verstärken (Signal-Amplifikation).

Direkte Methode (älteste Methode)

Das zu untersuchende Antigen (=Protein) wird unter definierten Bedingungen mit einem spezifischen Antikörper zusammengebracht, der mit einem Enzym oder Fluorochrom wie Fluorescein, Rhodamin oder Texas Red gekoppelt (konjugiert) ist. Der Antikörper (und somit das Enzym) bindet an das Antigen, nicht gebundener Antikörper wird abgespült. Dem Enzym wird in einem weiteren Schritt ein Substrat angeboten, das unter Bildung eines Farbstoffs mit dem Enzym reagiert. Dieser Farbstoff bildet sich dort, wo die immunchemische Reaktion stattgefunden hat und ist sichtbar. Einfach ausgedrückt: Antigen + Antikörper mit Enzym + Substrat/Chromogen = Farbe

Bei fluorochrom-markierten AK erfolgt die Detektion direkt im Fluoreszenzmikroskop; eignet sich gut zu Mehrfachdarstellungen unterschiedlicher Antigene in einem Präparat (AK werden mit Fluorochromen mit unterschiedlicher Emissionswellenlänge konjugiert);Immunfluoreszenz; erste Anwendung der IHC in den 50er.

Indirekte Methode

Bei dieser Methode wird im ersten Schritt ein spezifischer Antikörper (Primärantikörper) auf das zu untersuchende Gewebe/Zellen aufgebracht. In einem zweiten Schritt wird ein Antikörper aufgetragen, der sich gegen den ersten Antikörper richtet. Es ist der sog. Sekundärantikörper, der hier mit einem Enzym gekoppelt ist und die Farbentstehung mit einer Enzym-Substrat-Reaktion auslöst. Wieder entsteht ein sichtbarer Farbstoff.

Einfach: Antigen + Primärantikörper + Sekundärantikörper mit Enzym + Substrat/Chromogen = Farbe

Die indirekte Methode gibt es als Zwei-Schritt-Methode und als Drei-Schritt-Methode. Bei der Drei-Schritt-Methode wird ein weiterer, mit einem Enzym gekoppelter, Antikörper (=Tertiärantikörper)zugegeben. Dieser bindet an den Sekundärantikörper. Dieser Schritt dient der Signalverstärkung und ist sinnvoll, wenn eine geringe Menge an Epitop dargestellt werden soll.

Die indirekte Technik wird auch zum Nachweis von bereits gebundenen endogenen Antikörpern (z.B. Autoantikörper, antinukleäre Autoantikörper ANCA, Antihautantikörper AHA) angewendet; bzw. enthält das zu untersuchende Patienten-Serum diese Autoantikörper und wird auf Testgewebe aufgetragen. Bei einem positiven Resultat findet der Sekundärantikörper (hier typischerweise mit einem Fluorochrom gekoppelt) seinen Bindungspartner. (IIF = indirekte Immunfluoreszenz)

PAP, APAAP - Methode

Diese Methoden haben ihren Namen vom Peroxidase-Anti-Peroxidase bzw. Alkalische-Phosphatase-Anti-Alkalische-Phosphatase-Komplex, der hier nach dem Sekundär-AK aufgetragen wird. Der Komplex besteht aus drei Molekülen Enzym und zwei Antikörpern (aus der selben Spezies wie Primär-AK), die gegen das Enzym gerichtet sind. Der Sekundär-AK fungiert als Brücke zwischen Primär-AK und PAP-Komplex. Diese Methode zeigte erhöhte Sensitivität und geringere Hintergrundanfärbung als die Vorgänger-Methoden und wurde als "Kit" zur routinemäßigen Verwendung in den 80er Jahren in den Labors eingeführt.

Labelled (Strept-)Avidin-Biotin-Methode (LSAB)

Heutzutage ist diese Färbemethode die am meisten eingesetzte. Das Prinzip basiert auf der hohen Affinität von Streptavidin (Streptomyces avidinii) und Avidin (Hühnereiweiß) für Biotin. Streptavidin und Avidin besitzen jeweils vier Bindungsstellen für Biotin.

Die Reihenfolge der Reagenzien: Unkonjugierter Primärantikörper + biotinmarkierter (=biotinylierter) Sekundärantikörper + Avidin-Biotin-Enzymkonjugat + Substrat/Chromogen --> Farbe

Polymer-Methoden

Das stellt die neueste Entwicklung dar, die nun vermehrt in die Labors Einzug nimmt. Hier ist der Primär AK (direkte M.) bzw. der Sekundär AK (indirekte M.) mit einem oder mehreren Polymer-Molekülen (Dextran oder Polypeptid) bestückt. Diese Polymere sind markiert mit möglichst viel Enzym, das wiederum Substrat- und Chromogenumsetzung bewirkt. Somit erreicht man eine verstärkte Anfärbung am Ort des Antigens. Der Vorteil liegt darin, kein Biotin verwenden zu müssen, dass als "endogenes Biotin" Hintergrundfärbung verursachen kann. Die Methode ist meist sensitiver und schneller als LSAB. Der Nachteil liegt in der Molekülgröße, die ins Gewebe gebracht werden muss und zu sterischen Behinderungen am Bindungsort führen kann.

Enzyme, Substrate und Chromogene (häufig verwendete)

Peroxidase (POD, Horseradish peroxidase HRP)

Der Peroxidase (meist der Meerrettichperoxidase) wird Wasserstoffperoxid als Substrat angeboten. Die freiwerdenen Protonen oxidieren das vorher fast farblose Chromogen zu seinem farbigen Endprodukt unter Bildung von Wasser.

  • DAB (3,3'-Diaminobenzidin) bildet ein braunes Endprodukt
  • AEC (3-Amino-9-Ethylcarbazol) bildet ein rosenrotes Endprodukt
  • CN (4-Chlor-1-Naphthol) reagiert unter Bildung eines blauen Farbstoffs
  • Luminol reagiert unter Bildung von Chemolumineszenz
  • TMB (Tetramethylbenzidin) bildet ein blaues Endprodukt welches zur Abstoppen der Reaktion mit Schwefelsäure einen stabilen gelben Farbkomplex bildet

Alkalische Phosphatase (AP)

Der alkalischen Phosphatase werden organische Phosphatverbindungen als Substrat angeboten. Die AP spaltet Phosphat ab und die freigesetzte Verbindung reagiert zu einem farbigen Endprodukt.

Siehe auch

 
Dieser Artikel basiert auf dem Artikel Immunhistochemie aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.