Meine Merkliste
my.bionity.com  
Login  

Antihistaminikum



Antihistaminika, auch Histamin-Rezeptorblocker oder Histamin-Rezeptorantagonisten, sind Wirkstoffe, welche die Wirkung des körpereigenen Botenstoffs Histamin abschwächen oder aufheben, indem sie Histamin-Rezeptoren blockieren. Antihistaminika werden entsprechend ihrer Selektivität für die vier verschiedenen Histaminrezeptoren in H1-, H2-, H3- und H4-Antihistaminika unterteilt. Lediglich die H1- und H2-Antihistaminika besitzen derzeit eine therapeutische Bedeutung und werden insbesondere zur Behandlung von Allergien bzw. gegen Magenschleimhautentzündung eingesetzt.

Inhaltsverzeichnis

H1-Antihistaminika

H1-Antihistaminika hemmen die über H1-Rezeptoren vermittelten Histaminwirkungen. Das wichtigste Anwendungsgebiet der H1-Antihistaminika ist die Behandlung allergischer Beschwerden, wie Hautrötung, Juckreiz, Conjunctivitis und Rhinitis. Sie besitzen ein unterschiedlich stark ausgeprägtes Vermögen, die Blut-Hirn-Schranke zu passieren (ZNS-Gängigkeit) und zeigen somit ein unterschiedliches Spektrum zusätzlicher zentralnervöser Wirkungen und Nebenwirkungen. H1-Antihistaminika werden in Präparate der ersten, der zweiten und bisweilen der dritten Generation unterteilt, wobei sich die H1-Antihistaminika der ersten einerseits und zweiten und dritten Generation andererseits im Wesentlichen durch ihre ZNS-Gängigkeit unterscheiden.

H1-Antihistaminika der ersten Generation

H1-Antihistaminika der ersten Generation sind seit den 1930er Jahren bekannt[1]. Neben der H1-Rezeptoren hemmenden Wirkung besitzen einige Vertreter auch eine antagonistische Wirkung an Muskarin-Rezeptoren (z. B. Diphenhydramin), Dopamin-Rezeptoren (z. B. Promethazin) und Serotonin-Rezeptoren (z. B. Promethazin). H1-Antihistaminika der ersten Generation besitzen meist eine gute ZNS-Gängigkeit. Auf diese Weise hemmen sie auch die Effekte des Histamins an H1-Rezeptoren im Zentralnervensystem (z. B. Erbrechen, Erwachen).

Viele der charakteristischen Nebenwirkungen der H1-Antihistaminika der ersten Generation, wie z. B. die sedierende Wirkung, sind auf die ZNS-Gängigkeit der Substanzen zurückzuführen. Da neuere H1-Antihistaminika, welche die Blut-Hirn-Schranke nicht passieren, zur Verfügung stehen, besitzen die H1-Antihistaminika der ersten Generation bis auf Pheniramin und Dimetinden kaum noch Bedeutung als orale Antiallergika, sondern werden vorwiegend äußerlich (Salben, Nasensprays, Augentropfen) angewendet. Unter Ausnutzung der zentralnervösen Effekte finden H1-Antihistaminika der ersten Generation heute insbesondere als Antiemetika zur Behandlung der Reisekrankheit und als Schlafmittel Anwendung. Ihre niedrig dosierte Anwendung mit Analgetika in Kombinationspräparaten gegen grippale Infekte ist jedoch umstritten.

  • Ethylendiamine: Mepyramin (Pyrilamin), Tripelennamin (Pyribenzamin), Antazolin, Dimetinden, (Bamipin)
  • Ethanolamine: Diphenhydramin, Carbinoxamin, Doxylamin, Clemastin
  • Alkylamine: Pheniramin, Chlorphenamin (Chlorpheniramin), Dexchlorphenamin, Brompheniramin, Triprolidin
  • Piperazine: Hydroxyzin, Meclozin
  • Trizyklische Antihistaminika: Promethazin, Alimemazin (Trimeprazin), Zyproheptadin, Azatadin

H1-Antihistaminika der zweiten Generation

Die neueren H1-Antihistaminika der zweiten Generation unterscheiden sich von denen der ersten Generation im Wesentlichen durch eine schlechtere bis fehlende ZNS-Gängigkeit. Sie gelten daher als Antiallergika ohne nennenswerte sedierende Eigenschaften. Obgleich das Ziel der Entwicklung der H1-Antihistaminika der zweiten Generation war, Antiallergika mit weniger Nebenwirkungen zu schaffen, mussten einige Vertreter (Astemizol und Terfenadin) wegen schwerer Herzrhythmusstörungen vom Markt genommen werden.

H1-Antihistaminika der dritten Generation

Als Weiterentwicklungen der H1-Antihistaminika der zweiten Generation werden Levocetirizin, Desloratadin und Fexofenadin bisweilen als H1-Antihistaminika der dritten Generation bezeichnet. Sie sind das aktive Enantiomer von Cetirizin (Levocetirizin) bzw. die aktiven Metabolite von Loratadin (Desloratadin) und Terfenadin (Fexofenadin). Während die Entwicklung des Fexofenadins mit einem Gewinn an therapeutischer Sicherheit verbunden war (keine Herz-Rhythmus-Störungen), besitzen Levocetirizin und Desloratadin gegenüber Cetirizin und Loratadin kaum therapeutische Vorteile.

H2-Antihistaminika

H2-Antihistaminika sind Arzneistoffe, welche die durch H2-Rezeptoren vermittelte Histaminwirkung hemmen. H2-Rezeptoren können u. a. im Herz, in den Blutgefäßen und insbesondere in der Magenschleimhaut nachgewiesen werden, wo sie für die Produktion der Magensäure mitverantwortlich sind. Deshalb werden sie bei der Therapie von Magengeschwür und Zwölffingerdarmgeschwür eingesetzt. Ebenso werden sie als Begleittherapie beim Langzeiteinsatz von bestimmten Schmerzmitteln (z. B. Acetylsalicylsäure) verwendet, um das Auftreten von Magen- und Zwölffingerdarmgeschwüren zu reduzieren. Für diese Indikationen haben sie jedoch gegenüber Medikamenten aus der Gruppe der Protonenpumpenhemmer, die ein günstigeres Nutzen-Risiko-Verhältnis besitzen, an Bedeutung verloren.

Die Entwicklung der H2-Antihistaminika begann mit der Entdeckung der H2-Rezeptoren und des H2-Rezeptorantagonisten Burimamid durch James W. Black[2]. Heute finden die H2-Antihistaminika Cimetidin, Famotidin, Nizatidin, Ranitidin und Roxatidin therapeutische Anwendung.

H3-Antihistaminika

H3-Antihistaminika sind Arzneistoffe, welche die Effekte von Histamin an H3-Rezeptoren hemmen. Derzeit werden H3-Antihistaminika noch nicht therapeutisch genutzt; einige Vertreter, wie z. B. Cipralisant befinden sich in der klinischen Erprobung. H3-Antihistaminika werden als potenzielle Arzneistoffe zur Behandlung des ADHS, der Narkolepsie und der Alzheimer-Krankheit gehandelt.

H3-Antihistaminika: Thioperamid, Clobenpropit, Proxyfan, Ciproxyfan

H4-Antihistaminika

H4-Antihistaminika sind Substanzen, welche die Effekte von Histamin am H4-Rezeptor hemmen. Da dieser Rezeptor erst im Jahr 2000 entdeckt wurde, stehen bisher nur wenige Antagonisten zur Verfügung (z. B. Thioperamid, JNJ7777120). Da dieser Rezeptor an der Chemotaxis von Immun- und Entzündungszellen beteiligt ist, werden H4-Antihistaminika als potenzielle antiinflammatorische Arzneistoffe diskutiert[3].

Quellen

  1. Bovet D. & Staub A. (1937). Action protectrice des éthers phenoliques au cours l’intoxication histaminique. Cr. Soc. Biol., 124, 547–549.
  2. Black J.W., Duncan W.A.M., Durant C.J., Ganellin C.R. & Parsons M.E. (1972). Definition and antagonism of histamine H2 receptors. Nature, 236, 385–390.
  3. de Esch I.J., Thurmond R.L., Jongejan A. & Leurs R. (2005). The histamine H4 receptor as a new therapeutic target for inflammation. Trends Pharmacol. Sci., 26, 462–469.

Literatur

  • Parsons, M.E. & Ganellin, C.R. (2006): Histamine and its receptors. In: Br. J. Pharmacol. Bd. 147, Suppl. 1, S127-S135. PMID 16402096 doi:10.1038/sj.bjp.0706440 PDF
Bitte beachten Sie den Hinweis zu Gesundheitsthemen!
 
Dieser Artikel basiert auf dem Artikel Antihistaminikum aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.