Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.bionity.com
Mit einem my.bionity.com-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Agentenbasierte ModelleAgentenbasierte Modellierung ist eine spezielle, individuen-basierte Methode der computergestützten Modellbildung und Simulation, eng verknüpft mit komplexen Systemen, Multiagenten Systemen, evolutionärer Programmierung und zellulären Automaten. Weiteres empfehlenswertes Fachwissen
GeschichteAgentenbasierte Modellierung hat ihre Wurzeln sowohl in der Modellierung zellulärer Automaten, als auch in den diversen Bereichen künstlicher Intelligenz. Agentenbasierte Modelle basieren auf der Theorie von Multiagenten-Systemen. TheorieIm Gegensatz zu anderen Arten der Modellierung (z.B. System Dynamics) haben in der Agentenbasierten Modellierung viele kleine Einheiten (Agenten) Entscheidungs- oder Handlungsmöglichkeiten. Das System-Verhalten resultiert aus dem Verhalten der einzelnen Agenten und wird nicht auf Systemebene vorgegeben. Wenn es dabei zu Effekten auf der Systemebene kommt, die nicht unmittelbar aus den Entscheidungsalgorithmen der Individuen ableitbar sind, spricht man von Emergenz. Zusätzlich kann ein von den individuellen Entscheidungen getrenntes Systemverhalten implementiert werden. Zwei entscheidende Aspekt der Agentenbasierten Modellierung sind die Möglichkeiten heterogenes Verhalten und Abhängigkeiten von anderen Individuen explizit abbilden zu können. Diese Art der Modellierung kommt vor allem dann zur Anwendung, wenn der Fokus einer Fragestellung nicht die Stabilität eines Gleichgewichts bzw. die Annahme, dass ein Prozess in ein Gleichgewicht zurückkehrt, ist, sondern die Frage, wie sich ein System veränderten Rahmenbedingungen anpassen kann (Robustheit). Dabei wird der Erkenntnis Rechnung getragen, dass komplexe Probleme es erfordern, die Mikro-Ebene, also die Entscheidungen der Individuen, ihre Heterogenität und ihre Interaktionen, direkt zu untersuchen. AnwendungsbeispieleSehr unterschiedliche Anwendungen fallen in den Bereich der Agentenbasierten Modellierung. Sie unterscheiden sich zum Beispiel im Grad der modellierten Intelligenz der Agenten und in der Modellierung von physischem oder sozialem Raum. Allen diesen Ansätzen ist gemein, dass das Entscheidungsverhalten auf der Ebene der Individuen implementiert wird. Einige Beispiele verdeutlichen diese Bandbreite. Einfache Simulation der Entstehung von Staus (Netlogo-Beispiel „Traffic Basic“)Auf einem eindimensionalem Grid, also nur einer Reihe von aneinandergehängten Zellen bewegen sich Autos (die Agenten). Die Autos haben ein bestimmtes Beschleunigungs- und Bremsverhalten und halten einen Mindestabstand zu dem vor ihnen fahrenden Auto ein. Die simulierte Umwelt ist minimal und die nötige Intelligenz der Agenten ist auch nicht sehr hoch. Trotzdem lassen sich mit diesem Modell interessante Aussagen treffen: Wenn die Autos schnell beschleunigen können, kommt es leichter zu Staus. Entstehung von AmeisenstraßenÄhnlich einfache Intelligenz genügt simulierten Ameisen, die auf der Futtersuche Duftstoffe absondern und den Duftstoffen anderer Ameisen folgen. Die Duftstoffe verlieren sich mit der Zeit. Die zweidimensionale Umwelt kann hier schon sehr viel aufwändiger sein, zum Beispiel Futterquellen und Hindernisse enthalten. Auch wenn das Verhalten der Individuen einfach ist, kann sich hier eine komplexe Schwarmintelligenz bilden. Siehe dazu auch die in NetLogo implementierte Simulation der Entstehung einer Ameisenstraße [1] SegregationEtwas aufwändigeres Entscheidungsverhalten zeigen die Agenten in Schellings Segregationsmodell. Dort treffen Agenten aufgrund von unterschiedlichen Präferenzen eine Wahl, in welchen Stadtteil sie umziehen. Zu der räumlichen Umwelt kommt hier die soziale Umwelt. Das Verhalten der Agenten hängt vom Verhalten und den Präferenzen anderer Agenten ab (social embeddedness). Soziale NetzwerkeRaum kann gänzlich in den Hintergrund treten, wenn das Entscheidungsverhalten der Agenten nicht mehr von dem Ort, an dem sie sich aufhalten, abhängt, sondern von den anderen Agenten, mit denen sie Kontakt haben, wie etwa bei KonsumentInnenverhalten (zum Beispiel Consumats) oder der Ausbreitung kultureller Normen. Dazu werden soziale Netzwerke simuliert. Austausch findet nur mit den Agenten statt, zu denen eine Netzwerkbeziehung besteht. Hier kann das Entscheidungsverhalten der einzelnen Agenten durchaus schon komplizierter und vielschichtiger werden und zum Beispiel, wie bei den erwähnten Consumats, Wiederholung, Imitation, sozialen Vergleich und Nachdenken enthalten. Künstliche WirtschaftssystemeDie wissenschaftliche Disziplin Agent-based computational Economics beschäftigt sich mit der Simulation von wirtschaftlichem Entscheidungsverhalten auf der Ebene von Individuen. Untersuchte Fragen reichen dabei von Auktionsverhalten über individuellen Arbeitseinsatz (moral hazard) zu Verhalten in sozialen Dilemmata. Soziale SimulationDer Bereich der sozialen Simulation umfasst die Modellierung konkreter, beobachtbarer Situationen, die in Fallstudien untersucht werden. Die daraus resultierenden Agentenbasierten Modelle bilden das Verhalten der Menschen in den Untersuchungsgebieten, zum Beispiel Landwirte in einem Flusseinzugsgebiet, ab. Gleichzeitig können sie mit mehr oder weniger komplexen Modellen der physischen Umwelt gekoppelt werden und entsprechende Rückkopplungen enthalten. Ein aktuelles Beispiel hierfür ist: Berger, Birner, Diaz, McCarthy, Wittmer (2007): Capturing the complexity of water uses and water users within a multi-agent framework, Water Resour Manage 21:129-148 Warum Agentenbasierte Modellierung?Agentenbasierte Modellierung zeichnet sich vor allem durch die Möglichkeit aus, die Verbindungen zwischen der Mikro- und der Makro-Ebene explizit zu modellieren bzw. zu untersuchen. Dieser Aspekt wird in unterschiedlichen Fragestellungen benötigt:
Agentenbasierte Modellierung und WirtschaftswissenschaftDie Anwendung in Artificial Economics ist dabei besonders hervorzuheben, denn die Annahme von rational handelnden Individuen (Homo oeconomicus) war stets eine Beschreibung auf der aggregierten Ebene. Das aggregierte Verhalten von wirtschaftlich handelnden Individuen kann so beschrieben werden, als würden die Individuen rational handeln. Für Märkte mit viel Information, vielen Lerngelegenheiten, genügend Zeit und Motivation mag das stimmen. Es gibt aber genügend Beispiele für Situationen, in denen Annahmen rationalen Verhaltens keine guten Prognosen über tatsächliches menschliches Verhalten liefern. Die interessanten wissenschaftlichen Fragestellungen, vor allem in Bezug auf öffentliche Güter und soziale Dilemmata, gehören zu diesen Situationen. Da es aber keine andere Theorie über menschliches Verhalten gibt, die sich auf die gleiche Weise zur Aggregation eignet, wie die der Rationalität, ist es in solchen Fragestellungen nötig, das heterogene, tatsächlich zu beobachtende Verhalten von Menschen zu untersuchen. Agentenbasierte Modellierung ist eine Methode, dieses Verhalten zu simulieren und Hypothesen über die Zusammenhänge zwischen dem Mikro-Verhalten der Individuen und dem Makro-Verhalten des Systems aufzustellen und zu untersuchen. MethodenEinfache Programme, um Agentenbasierte Modelle zu erstellen, sind NetLogo und StarLogo. Mehr Programmiererfahrung erfordern Swarm (Objective C und Java), Repast (Java), MASON (Java), Famoja (Java), EcoLab (C++) und Cormas (SmallTalk). Siehe auch
Literatur
|
|
Dieser Artikel basiert auf dem Artikel Agentenbasierte_Modelle aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |